@article{VMJ_2024_26_2_a1,
author = {S. G. Georgiev and A. Hakem},
title = {Existence of solutions for a class of impulsive {Burgers} equation},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {26--38},
year = {2024},
volume = {26},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a1/}
}
S. G. Georgiev; A. Hakem. Existence of solutions for a class of impulsive Burgers equation. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 2, pp. 26-38. http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a1/
[1] Konicek, P., Bednarik, M. and Cervenka, M., “Finite-Amplitude Acoustic Waves in a Liquid-Filled Tube”, Hydroacoustics, eds. E. Kozaczka, G. Grelowska, Naval Academy, Gdynia, 2000, 85–88
[2] Mitome, H., “An Exact Solution for Finite-Amplitude Plane Sound Waves in a Dissipative Fluid”, Journal of the Acoustical Society of America, 86:6 (1989), 2334–2338 | DOI | MR
[3] Ochmann, M., “Nonlinear Resonant Oscilllations in Closed Tubes — An Application of the Averaging Method”, Journal of the Acoustical Society of America, 77:1 (1985), 61–66 | DOI | MR | Zbl
[4] Agarwal, R. P., Meehan, M. and O'Regan, D., Fixed Point Theory and Applications, Cambridge Tracts in Mathematics, 141, Cambridge University Press, 2001 | DOI | MR | Zbl
[5] Djebali, S. and Mebarki, K., “Fixed Point Index for Expansive Perturbation of $k$-Set Contraction Mappings”, Topological Methods in Nonlinear Analysis, 54:2 (2019), 613–640 | DOI | MR | Zbl
[6] Mouhous, M., Georgiev, S. and Mebarki, K., “Existence of Solutions for a Class of First Order Boundary Value Problems”, Archivum Mathematicum, 58:3 (2022), 141–158 | DOI | MR
[7] Polyanin, A. and Manzhirov, A., Handbook of Integral Equations, CRC Press, 1998 | MR | Zbl