Existence of solutions for a class of impulsive Burgers equation
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 2, pp. 26-38
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study a class of impulsive Burgers equations. A new topological approach is applied to prove the existence of at least one and at least two nonnegative classical solutions. The arguments are based on recent theoretical results. Here we focus our attention on a class of Burgers equations and we investigate it for the existence of classical solutions. The Burgers equation can be used for modeling both traveling and standing nonlinear plane waves. The simplest model equation can describe the second-order nonlinear effects connected with the propagation of high-amplitude (finite-amplitude waves) plane waves and, in addition, the dissipative effects in real fluids. There are several approximate solutions to the Burgers equation. These solutions are always fixed to areas before and after the shock formation. For an area where the shock wave is forming no approximate solution has yet been found. Therefore, it is therefore necessary to solve the Burgers equation numerically in this area.
			
            
            
            
          
        
      @article{VMJ_2024_26_2_a1,
     author = {S. G. Georgiev and A. Hakem},
     title = {Existence of solutions for a class of impulsive {Burgers} equation},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {26--38},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a1/}
}
                      
                      
                    TY - JOUR AU - S. G. Georgiev AU - A. Hakem TI - Existence of solutions for a class of impulsive Burgers equation JO - Vladikavkazskij matematičeskij žurnal PY - 2024 SP - 26 EP - 38 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a1/ LA - en ID - VMJ_2024_26_2_a1 ER -
S. G. Georgiev; A. Hakem. Existence of solutions for a class of impulsive Burgers equation. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 2, pp. 26-38. http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a1/