@article{VMJ_2024_26_2_a0,
author = {D. K. Durdiev and T. R. Suyarov},
title = {Inverse coefficient problem for the {2D} wave equation with initial and nonlocal boundary conditions},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {5--25},
year = {2024},
volume = {26},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a0/}
}
TY - JOUR AU - D. K. Durdiev AU - T. R. Suyarov TI - Inverse coefficient problem for the 2D wave equation with initial and nonlocal boundary conditions JO - Vladikavkazskij matematičeskij žurnal PY - 2024 SP - 5 EP - 25 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a0/ LA - en ID - VMJ_2024_26_2_a0 ER -
%0 Journal Article %A D. K. Durdiev %A T. R. Suyarov %T Inverse coefficient problem for the 2D wave equation with initial and nonlocal boundary conditions %J Vladikavkazskij matematičeskij žurnal %D 2024 %P 5-25 %V 26 %N 2 %U http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a0/ %G en %F VMJ_2024_26_2_a0
D. K. Durdiev; T. R. Suyarov. Inverse coefficient problem for the 2D wave equation with initial and nonlocal boundary conditions. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 2, pp. 5-25. http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a0/
[1] Romanov, V. G., Inverse Problems of Mathematical Physics, VNU Science Press, Utrecht, 1987 | MR
[2] Hasang'lu A. Hasanov and Romanov, V. G., Introduction to Inverse Problems for Differential Equations, Springer International Publishing, 2017 | MR
[3] Durdiev, D. K. and Totieva, Z. D., Kernel Determination Problems in Hyperbolic Integro Differential Equations, Infosys Science Foundation Series in Mathematical Sciences, Springer Nature Singapore Pte Ltd, 2023 | MR | Zbl
[4] Kabanikhin, S. I., Inverse and Ill-Posed Problems: Theory and Applications, De Gruyter, Berlin, 2011 | MR
[5] Sabitov, K. B. and Zainullov, A. R., “Inverse Problems for a Two-Dimensional Heat Equation with Unknown Right-Hand Side”, Russian Mathematics (Izvestiya VUZ. Matematika), 65:3 (2021), 75–88 | DOI | MR | Zbl
[6] Sabitov, K. B. and Zainullov, A. R., “Inverse Problems for the Heat Equation to Find The Initial Condition and the Right Side”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 161:2 (2019), 274–291 (in Russian) | DOI | MR
[7] Ionkin, N. I. and Morozova, V. A., “The Two-Dimensional Heat Equation with Nonlocal Boundary Conditions”, Differential Equations, 36:7 (2000), 982–987 | DOI | MR | Zbl
[8] Durdiev, D. K. and Safarov, J. Sh., “The Problem of Determining the Two-Dimensional Kernel of the Viscoelasticity Equation with Weakly Horizontal Inhomogeneity”, Sibirskii Zhurnal Industrial'noi Matematiki, 25:1 (2022), 14–38 (in Russian) | DOI | MR | Zbl
[9] Durdiev, D. K. and Rahmonov, A. A., “The Problem of Determining the 2D-Kernel in a System of Integro-Differential Equations of a Viscoelastic Porous Medium”, Journal of Applied and Industrial Mathematics, 14:2 (2020), 281–295 | DOI | MR | Zbl
[10] Durdiev, D. K. and Safarov, J. Sh., “Inverse Problem for an Integrodifferential Equation of the Hyperbolic Type protect in a Rectangular Domain”, Mathematical Notes, 114:2 (2023), 199–211 | DOI | MR | Zbl
[11] Durdiev, D. K. and Boltaev, A. A., “Inverse Problem for Viscoelastic System in a Vertically Layered Medium”, Vladikavkaz Mathematical Journal, 24:4 (2022), 30–47 | DOI | MR | Zbl
[12] Durdiev, D. K. and Totieva, Z. D., “The Problem Of Determining the One-Dimensional Matrix Kernel of the System of Viscoelasticity Equations”, Mathematical Methods in the Applied Sciences, 41:17 (2018), 8019–8032 | DOI | MR | Zbl
[13] Janno, J. and Wolfersdorf, L., “Inverse Problems for Identifcation of Memory Kernels in Heat Fow”, Journal of Inverse and Ill-Posed Problems, 4:1 (1996), 39–66 | DOI | MR | Zbl
[14] Bitsadze, A. V. and Samarsky, A. A., “Some Elementary Generalizations of Linear Elliptic Boundary Value Problems”, Doklady Academy Nauk SSSR, 185:4 (1969), 739–740 (in Russian) | MR | Zbl
[15] Ilyin, V. A., “On the Unconditional Basis Property on a Closed Interval of Systems of Eigen and Associated Functions of a Second-Order Differential Operator, II”, Doklady Academy Nauk SSSR, 273:5 (1983), 1048–1053 (in Russian) | MR
[16] Ilyin, V. A., “On the absolute and Uniform Convergence of the Expansions In Eigen- and Associated Functions of a Nonselfadjoint Elliptic Operator, I”, Doklady Academy Nauk SSSR, 274:1 (1984), 19–22 (in Russian) | MR
[17] Filatov, A. N. and Sharova, L. V., Integral Inequalities and the Theory of Nonlinear Oscillations, Nauka, M., 1976, 152 pp. (in Russian) | MR | Zbl
[18] Ionkin, N. I., “The Solution of a Certain Boundary Value Problem of the Theory of Heat Conduction with a Nonclassical Boundary Condition”, Differentsial'nye Uravneniya, 13:2 (1977), 294–304 (in Russian) | MR | Zbl
[19] Kolmogorov, A. N. and Fomin, S. V., Elements of the Theory of Functions and Functional Analysis, Dover Books on Mathmetics, 1976 | MR