@article{VMJ_2024_26_1_a9,
author = {A. V. Neklyudov},
title = {The absence of global solutions of the fourth-order {Gauss} type equation},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {123--131},
year = {2024},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_1_a9/}
}
A. V. Neklyudov. The absence of global solutions of the fourth-order Gauss type equation. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 1, pp. 123-131. http://geodesic.mathdoc.fr/item/VMJ_2024_26_1_a9/
[1] Vekua, I. N., “Some Properties of Solutions of Gauss's Equation”, Trudy Matematicheskogo Instituta im. V. A. Steklova, 64, 1961, 5–8 | Zbl
[2] “On the Equation $\Delta u+k(x)e^u=0$”, Russian Mathematical Surveys, 33:2 (1978), 243–244 | DOI | MR | Zbl
[3] Usami H., “Note on the inequality $\Delta u\ge k(x)e^u$ in ${\mathbb R}^n$”, Hiroshima Math. J., 18:3 (1988), 661–668 | DOI | MR | Zbl
[4] Flavin J. N., Knops R. J., Payne L. E., “Asymptotic behavior of solutions to semi-linear elliptic equations on the half-cylinder”, Z. Angew. Math. Phys., 43:3 (1992), 405–421 | DOI | MR | Zbl
[5] Kuo-Shung Cheng, Chang-Shou Lin, “On the conformal Gaussian curvature equation in ${\mathbb R}^2$”, J. Diff. Equ., 146:1 (1998), 226–250 | DOI | MR | Zbl
[6] “On Entire Solutions of a Semilinear Elliptic Equation on the Plane”, Differential Equations, 42:6 (2006), 842–852 | DOI | MR | Zbl
[7] “On the Absence of Global Solutions to the Gauss Equation and Solutions in External Areas”, Russian Mathematics (Izvestiya VUZ. Matematika), 58:1 (2014), 47–51 | DOI | MR | Zbl
[8] Berchio E., Farina A., Ferrero A., Gazzola F., “Existence and stability of entire solutions to a semi-linear fourth order elliptic problem”, J. Diff. Equ., 252:3 (2012), 2596–2616 | DOI | MR | Zbl
[9] Lin C.-S., “A classification of solutions of a conformally invariant fourth order equation in ${\mathbb R}^n$”, Comment. Math. Helv., 73:2 (1998), 206–231 | DOI | MR | Zbl
[10] Wei J., Ye D., “Nonradial solutions for a conformally invariant fourth order equation in ${\mathbb R}^4$”, Calc. Var., 32 (2008), 373–386 | DOI | MR | Zbl
[11] Warnault G., “Liouville theorems for stable radial solutions for the biharmonic operator”, Asymptot. Anal., 69:1–2 (2010), 87–98 | DOI | MR | Zbl
[12] Mitidieri, E. and Pokhozhaev, S. I., “A Priori Estimates and the Absence of Solutions of Nonlinear Partial Differential Equations and Inequalities”, Trudy Matematicheskogo Instituta im. V. A. Steklova, 234, 2001, 3–383 (in Russian)
[13] On the Asymptotic Properties and Necessary Conditions for Existence of Solutions of Nonlinear Second Order Elliptic Equations, Mathematics of the USSR-Sbornik, 35:6 (1979), 823–849 | DOI | MR | Zbl