On overgroups of a cycle rich in transvections
Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 1, pp. 100-105
Voir la notice de l'article provenant de la source Math-Net.Ru
A subgroup $H$ of the general linear group $G=GL(n,R)$ of order $n$ over the ring $R$ is said to be rich in transvections if it contains elementary transvections $t_{ij}(\alpha)=e+\alpha e_{ij}$ at all positions $(i, j)$, $i\neq j$, for some $\alpha\in R$, $\alpha\neq 0$. This concept was introduced by Z. I. Borevich, considering the problem of describing subgroups of linear groups containing fixed subgroup. It is known that the overgroup of a nonsplit maximal torus containing an elementary transvection at some one position, is rich in transvections. For a commutative domain $R$ with unit and a cycle $\pi=(1 \ 2 \ \ldots\ n)\in S_n$ of length $n$, the following proposition is proved. A subgroup $\langle t_{ij}(\alpha), (\pi) \rangle$ of the general linear group $GL(n, R)$ generated by the permutation matrix $(\pi)$ and the transvection $t_{ij}(\alpha)$ is rich in transvections if and only if the numbers $i-j$ and $n$ are coprime. A system of additive subgroups $\sigma=(\sigma_{ij})$, $1\leq i,j\leq n$, of a ring $R$ is called a net (carpet) over a ring $R$ of order $n$, if $\sigma_{ir} \sigma_{rj} \subseteq{\sigma_{ij}} $ for all values of the indices $i$, $r$, $j$ (Z. I. Borevich, V. M. Levchuk). The same system, but without the diagonal, called elementary net. We call a complete or elementary net $\sigma = (\sigma_{ij})$ irreducible if all additive subgroups of $\sigma_{ij}$ are nonzero. In this note we define weakly saturated nets that play an important role in the proof of the main result.
@article{VMJ_2024_26_1_a7,
author = {R. Y. Dryaeva},
title = {On overgroups of a cycle rich in transvections},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {100--105},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_1_a7/}
}
R. Y. Dryaeva. On overgroups of a cycle rich in transvections. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 1, pp. 100-105. http://geodesic.mathdoc.fr/item/VMJ_2024_26_1_a7/