@article{VMJ_2024_26_1_a5,
author = {A. O. Vatulyan and S. A. Nesterov},
title = {Inverse problem of thermoelectricity for a functionally graded layer},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {68--84},
year = {2024},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_1_a5/}
}
A. O. Vatulyan; S. A. Nesterov. Inverse problem of thermoelectricity for a functionally graded layer. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 1, pp. 68-84. http://geodesic.mathdoc.fr/item/VMJ_2024_26_1_a5/
[1] “Fine-Film Captive Pressure and Temperature”, Sensors and Systems, 58:3(201) (2016), 50–56 (in Russian)
[2] Tauchert T. R., Ashida F., Noda N., “Developments in thermopiezoelasticity with relevance to smart composite structures”, Compos. Struct., 48:1–3 (2000), 31–38 | DOI
[3] Rao S. S., Sunar M., “Analysis of distributed thermopiezoelectric sensors and actuators in advanced intelligent structures”, AIAA Journal, 93:7 (1993), 1280–1286 | DOI
[4] Mindlin R. D., “On the equations of motion of piezoelectric crystals”, Probl. Contin. Mech. SIAM, 1961, 282–290 | DOI | MR
[5] Mindlin R. D., “Equations of high frequency, vibrations of thermopiezoelectric crystal plates”, Int. J. Solid. Struct., 10:6 (1974), 625–637 | DOI | Zbl
[6] “Plane Waves and Fundamental Solutions in Linear Thermoelectroelasticity”, Journal of Applied Mechanics and Technical Physics, 37 (1996), 727–733 | DOI | MR | Zbl
[7] Vatulyan, A. O., “Thermal Shock on the Thermoelectroelastic Layer”, Vestnik Donskogo Gosudarstvennogo Tekhnichescogo Universiteta, 1(7):1 (2001), 82–89 (in Russian)
[8] “Applied Theory of Flexural Vibrations of a Piezoactive Bimorph in the Framework of an Uncoupled Boundary-Value Problem of Thermoelectroelasticity”, Contemporary Mathematics Fundamental Directions, 69, no. 2, 2023, 364–374 (in Russian) | DOI
[9] Zhao X., Iegaink F. J. N., Zhu W. D., Li Y .H., “Coupled thermo-electro-elastic forced vibrations of piezoelectric laminated beams by means of Green's functions”, Int. J. Solid. Struct., 156:9 (2019), 355–369 | DOI
[10] Shen S., Kuang Z. B., “An active control model of laminated piezothermoelastic plate”, Int. J. Solids and Struct., 36:13 (1999), 1925–1947 | DOI | Zbl
[11] Belokon, A. V. and Nasedkin, A. V., “Calculation of Some Types of Thermoelectroelastic Problems Using the ANSYS and ASELAN Packages”, Izvestiya vuzov, Severo-Kavkazskiy region, 2004, spetsial'nyy vypusk, 52–55 (in Russian) | Zbl
[12] Wang B. L., Noda N., “Design of a smart functionally graded thermopiezoelectric composite structure”, Smart Mater. Struct., 10 (2001), 189–193 | DOI
[13] Ying C., Zhifei S., “Exact Solutions of Functionally Gradient Piezothermoelastic Cantilevers and Parameter Identification”, J. Intell. Mater. Syst. Struct., 16:6 (2005), 531–539 | DOI
[14] Soloviev A. N., Chebanenko V. A., Oganesyan P. A., Chao S. F., Liu Y. M., “Applied theory for electroelastic plates with non-homogeneous polarization”, Mater. Phys. Mech., 42:2 (2019), 242–255 | DOI
[15] Vatulyan, A. O. and Nesterov, S. A., “Dynamic Problem of Thermoelectroelasticity for Functionally Graded Layer”, Computational Continuum Mechanics, 10:2 (2017), 117–126 (in Russian) | DOI
[16] Belyankova, T. I. and Kalinchuk, V. V., “On the Modeling of a Prestressed Thermoelastic Half-Space with a Coating”, Mechanics of Solids, 52:1 (2017), 95–110 | DOI
[17] Vatulyan, A. O. and Nesterov, S. A., “Identification of Inhomogeneous Characteristics of Prestressed Pyromaterials”, Chebyshevskii Sbornik, 19:2 (2018), 183–198 (in Russian) | DOI | MR | Zbl
[18] Vatulyan A., Nesterov S., Nedin R., “Some features of solving an inverse problem on identification of material properties of functionally graded pyroelectrics”, Int. J. Heat Mass Transfer., 128 (2019), 1157–1167 | DOI
[19] Vatulyan, A. O. and Nesterov, S. A., Coefficient Inverse Problems of Thermomechanics, 2nd ed., Southern Federal University Press, Rostov-on-Don–Taganrog, 2022, 178 pp. (in Russian) | MR
[20] Vatul'yan, A. O. and Nesterov, S. A., “Study of the Inverse Problems of Thermoelasticity for Inhomogeneous Materials”, Siberian Mathematical Journal, 64:3 (2023), 699–706 | DOI | DOI | MR | MR | Zbl | Zbl
[21] Vatulyan, A. O. and Nesterov, S. A., “Solution of the Inverse Problem of Two Thermomechanical Characteristics Identification of a Functionally Graded Rod”, Izvestiya of SaratovUniversity. Mathematics. Mechanics. Informatics, 22:2 (2022), 180–195 (in Russian) | DOI | MR | Zbl
[22] Vatul'yan, A. O. and Uglich, P. S., “Reconstruction of Inhomogeneous Characteristics of a Transverse Inhomogeneous Layer in Antiplane Vibrations”, Journal of Applied Mechanics and Technical Physics, 55:3 (2014), 499–505 | DOI | MR | Zbl
[23] Vatul'yan, A. O., Bogachev, I. V. and Yavruyan, O. V., “Identifying the Inhomogeneous Properties of an Orthotropic Elastic Layer”, Acoustical Physics, 59:6 (2013), 702–708 | DOI | DOI
[24] “Numerical-Analytical Solution of the Inverse Coefficient Problem of Thermoelasticity for a Plate”, Vestnik Moskovskogo Aviatsionnogo Instituta, 16:6 (2009), 244–249 (in Russian) | MR
[25] Lukasievicz S. A., Babaei R., Qian R. E., “Detection of material properties in a layered body by means of thermal effects”, J. Thermal Stresses, 26:1 (2003), 13–23 | DOI | MR
[26] Vatulyan, A. O. and Nesterov, S. A., “On One Approach to Identifying the Thermomechanical Characteristics of a Layered Biological Tissue”, Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2016, no. 2, 29–36 (in Russian)
[27] Vatulyan, A. O. and Nesterov, S. A., “Numerical Implementation of an Iterative Scheme for Solving Inverse Problems of Thermoelasticity for Inhomogeneous Bodies with Coatings”, Computational Technologies, 22:5 (2017), 14–26 (in Russian) | Zbl
[28] Inverse Coefficient Problems for Differential Equations of Elasticity, Nauka, Novosibirsk, 1990, 304 pp. (in Russian) | MR
[29] Tikhonov, A. N., Goncharskiy, A. V., Stepanov, V. V. and Yagola, A. G., Numerical Methods for Solving Ill-Posed Problems, Nauka, M., 1990, 230 pp. (in Russian) | MR
[30] Raddy J. N., Chin C. D., “Thermoelastic analysis of functionally graded cylinders and plates”, J. Thermal Stresses, 21 (1998), 593–626 | DOI
[31] Babaei M. H., Chen Z. T., “The transient coupled thermo-piezoelectric hollow cylinder to dynamic loadings response of a functionally graded piezoelectric”, Proc. R. Soc. A, 466:2116 (2010), 1077–1091 | DOI | Zbl