General nondegenerate solution of a system of functional equations
Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 1, pp. 56-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Systems of functional equations of the form $f(\bar x,\bar y,\bar \xi,\bar \eta,\bar \mu,\bar \nu ) = \chi (g(x,y,\xi, \eta ),\mu,\nu)$ with six unknown functions $\bar x$, $\bar y$, $\bar \xi$, $\bar \eta$, $\bar \mu$, $\bar \nu$ arise when establishing the mutual embedding of two-metric phenomenologically symmetric geometries of two sets (TPhS GTS). When establishing an embedding of an additive TPhS GTS of rank $(2, 2)$ with a known vector function $g(x,y,\xi,\eta )=({g^1},{g^1})=(x+\xi,y+\eta)$ into a dual GDM DFS of rank $(3, 2)$ with a known vector function $f(x,y,\xi,\eta,\mu,\nu )=({f^1},{f^2})=(x\xi+\mu,x\eta+y\xi+\nu )$ the explicit form of the system of two functional equations is as follows: $\overline x \overline \xi + \overline \mu = \chi^1(x + \xi,y + \eta,\mu,\nu )$, $\overline x \overline\eta+\overline y\overline\xi+\overline\nu=\chi^2(x+\xi,y+\eta,\mu,\nu )$. This system of two functional equations is solvable because the expressions for the vector functions $g$ and $f$ in the system are known. To find a general nondegenerate solution to a given system of functional equations, it is necessary to develop a solving method, which is an interesting and meaningful mathematical problem. The basis of the method is the differentiation of one of the functional equations included in the system, followed by the transition to differential equations. Further, the solutions of the differential equations are substituted into the second functional equation of the original system of functional equations, from which, under appropriate restrictions, its general nondegenerate solution is found. This method can be developed and applied to other systems of functional equations of the same type that arise in the framework of the TPhS GTS embedding problem in order to find their general nondegenerate solution.
@article{VMJ_2024_26_1_a4,
     author = {R. A. Bogdanova and G. G. Mikhailichenko},
     title = {General nondegenerate solution of a system of functional equations},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {56--67},
     year = {2024},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_1_a4/}
}
TY  - JOUR
AU  - R. A. Bogdanova
AU  - G. G. Mikhailichenko
TI  - General nondegenerate solution of a system of functional equations
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2024
SP  - 56
EP  - 67
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2024_26_1_a4/
LA  - ru
ID  - VMJ_2024_26_1_a4
ER  - 
%0 Journal Article
%A R. A. Bogdanova
%A G. G. Mikhailichenko
%T General nondegenerate solution of a system of functional equations
%J Vladikavkazskij matematičeskij žurnal
%D 2024
%P 56-67
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2024_26_1_a4/
%G ru
%F VMJ_2024_26_1_a4
R. A. Bogdanova; G. G. Mikhailichenko. General nondegenerate solution of a system of functional equations. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 1, pp. 56-67. http://geodesic.mathdoc.fr/item/VMJ_2024_26_1_a4/

[1] Mikhailichenko, G. G., Group Symmetry of Physical Structures, BGPU, Barnaul, 2003, 203 pp. (in Russian)

[2] Mikhailichenko, G. G., “Dimetric Physical Structures of Rank $(n + 1, 2)$”, Siberian Mathematical Journal, 34:3 (1993), 513–522 | DOI | MR | Zbl

[3] Kulakov, Yu. I., “A Mathematical Formulation of the Theory of Physical Structures”, Siberian Mathematical Journal, 12:5 (1971), 822–824 | DOI | MR | Zbl

[4] Mikhailichenko, G. G., “The Solution of Functional Equations in the Theory of Physical Structures”, Doklady Akademii Nauk, 206:5 (1972), 1056–1058 (in Russian) | Zbl

[5] Kyrov, V. A., “On the Embedding of Two-Dimetric Phenomenologically Symmetric Geometries”, Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2018, no. 56, 5–16 (in Russian) | DOI | MR | Zbl

[6] Bogdanova, R. A., Mikhailichenko, G. G. and Muradov, R. M., “Successive in Rank $(n+1, 2)$ Embedding of Dimetric Phenomenologically Symmetric Geometries of Two Sets”, Russian Mathematics (Izvestiya VUZ. Matematika), 2020, no. 64, 6–10 | DOI | DOI | MR | Zbl

[7] Kyrov, V. A. and Mikhailichenko, G. G., “Embedding of the Additive Two-Metric Phenomenologically Symmetric Geometry of Two Sets of Rank $(2, 2)$ into the Two-Metric Phenomenologically Symmetric Geometries of Two Sets of Rank $(3, 2)$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Kompyuternye Nauki, 28:3 (2018), 305–327 (in Russian) | DOI | MR | Zbl

[8] Kyrov, V. A., “Two-Metric Spaces”, Russian Mathematics, 49:5 (2005), 25–35 | MR | Zbl

[9] Kyrov, V. A. and Mikhailichenko, G. G., “Nondegenerate Canonical Solutions of one System of Functional Equations”, Russian Mathematics, 65:8 (2021), 40–48 | DOI | DOI | MR | Zbl

[10] Kyrov, V. A. and Mikhailichenko, G. G., “Nondegenerate Canonical Solutions of a Certain System of Functional Equations”, Vladikavkaz Mathematical Journal, 24:1 (2022), 44–53 (in Russian) | DOI | MR | Zbl