@article{VMJ_2024_26_1_a2,
author = {B. P. Allahverdiev and H. Tuna},
title = {Existence theorem for a fractal {Sturm{\textendash}Liouville} problem},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {27--35},
year = {2024},
volume = {26},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_1_a2/}
}
B. P. Allahverdiev; H. Tuna. Existence theorem for a fractal Sturm–Liouville problem. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 1, pp. 27-35. http://geodesic.mathdoc.fr/item/VMJ_2024_26_1_a2/
[1] Parvate, A. and Gangal, A. D., “Calculus on Fractal Subsets of Real Line — I: Formulation”, Fractals, 17:1 (2009), 53–81 | DOI | MR | Zbl
[2] Çetinkaya, F. A. and Golmankaneh, A. K., “General Characteristics of a Fractal Sturm–Liouville Problem”, Turkish Journal of Mathematics, 45:4 (2021), 1835–1846 | DOI | MR
[3] Golmankhaneh, A. K., Fractal Calculus and its Applications: $F^{\alpha}$-Calculus, World Scientific Publ. Co. Pte. Ltd, 2022 | DOI | MR
[4] Golmankhaneh, A. K. and Tunç, C., “Stochastic Differential Equations on Fractal Sets”, Stochastics, 92:8 (2020), 1244–1260 | DOI | MR | Zbl
[5] Golmankhaneh, A. K. and Tunç, C., “Sumudu Transform in Fractal Calculus”, Applied Mathematics and Computation, 350 (2019), 386–401 | DOI | MR | Zbl
[6] Golmankhaneh, A. K. and Tunc, C., “On the Lipschitz Condition in the Fractal Calculus”, Chaos, Solitons Fractals, 95 (2017), 140–147 | DOI | MR | Zbl
[7] Parvate, A. and Gangal, A. D., “Calculus on Fractal Subsets of Real Line – I: Conjugacy with Ordinary Calculus”, Fractals, 19:3 (2011), 271–290 | DOI | MR | Zbl
[8] Kolwankar, K. M. and Gangal, A. D., “Fractional Differentiability of Nowhere Differentiable Functions and Dimensions”, Chaos, 6:4 (1996), 505–513 | DOI | MR | Zbl
[9] Kolwankar, K. M. and Gangal, A. D., “Hölder Exponents of Irregular Signals and Local Fractional Derivatives”, Pramana — Journal of Physics, 48 (1997), 49–68 | DOI
[10] Kolwankar, K. M. and Gangal, A. D., “Local Fractional Fokker-Planck Equation”, Physical Review Letters, 80:2 (1998), 214–217 | DOI | MR | Zbl
[11] Kolwankar, K. M. and Gangal, A. D., “Local Fractional Derivatives and Fractal Functions of Several Variables”, Mathematical Physics, 1998, arXiv: physics/9801010 | DOI
[12] Aydemir, K. and Mukhtarov, O. Sh., “A New Type Sturm–Liouville Problem with an Abstract Linear Operator Contained in the Equation”, Quaestiones Mathematicae, 45:12 (2022), 1931–1948 | DOI | MR | Zbl
[13] Aydemir, K. and Mukhtarov, O. Sh., “Qualitative Analysis of Eigenvalues and Eigenfunctions of one Boundary Value-Transmission Problem”, Boundary Value Problems, 2016, 82 | DOI | MR | Zbl
[14] Levitan, B. M. and Sargsjan, I. S., Sturm–Liouville and Dirac Operators, Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1991 | MR
[15] Olgar, H. and Mukhtarov, O. Sh., “Weak Eigenfunctions of Two-Interval Sturm–Liouville Problems Together with Interaction Conditions”, Journal of Mathematical Physics, 58:4 (2017), 042201 | DOI | MR | Zbl
[16] Ozkan, A. S. and Adalar, I., “Inverse Nodal Problems for Sturm–Liouville Equation with Nonlocal Boundary Conditions”, Journal of Mathematical Analysis and Applications, 520:1 (2023), 126904 | DOI | MR | Zbl
[17] Koyunbakan, H., “Reconstruction of Potential in Discrete Sturm–Liouville Problem”, Qualitative Theory of Dynamical Systems, 21 (2022), 13 | DOI | MR | Zbl
[18] Karahan, D. and Mamedov, K. R., “On a $q$-Boundary Value Problem with Discontinuity Conditions”, Bulletin of the South Ural State University, Ser. Mathematics. Mechanics. Physics, 13:4 (2021), 5–12 | DOI | Zbl
[19] Karahan, D., “On a $q$-Analogue of the Sturm–Liouville Operator with Discontinuity Conditions”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 26:3 (2022), 407–418 | DOI | MR | Zbl