@article{VMJ_2024_26_1_a11,
author = {A. G. Tatashev and M. V. Yashina},
title = {The optimal competition resolution rule for a controlled binary chain},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {142--153},
year = {2024},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_1_a11/}
}
TY - JOUR AU - A. G. Tatashev AU - M. V. Yashina TI - The optimal competition resolution rule for a controlled binary chain JO - Vladikavkazskij matematičeskij žurnal PY - 2024 SP - 142 EP - 153 VL - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMJ_2024_26_1_a11/ LA - ru ID - VMJ_2024_26_1_a11 ER -
A. G. Tatashev; M. V. Yashina. The optimal competition resolution rule for a controlled binary chain. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 1, pp. 142-153. http://geodesic.mathdoc.fr/item/VMJ_2024_26_1_a11/
[1] Schreckenberg M., Shadshneider M., Nagel K., Ito N., “Discrete stochastic models for traffic flow”, Phys. Rev., 51:4 (1995), 2939–2949 | DOI
[2] Blank, M. L., “Exact Analysis of Dynamical Systems Arising in Models of Traffic Flow”, Russian Mathematical Surveys, 55:3 (2000), 562–563 | DOI | DOI | MR | Zbl
[3] Belitsky V., Ferrari P. A., “Invariant measures and convergence properties for cellular automation 184 and related processes”, J. Stat. Phys., 118:3/4 (2005), 589–523 | DOI | MR
[4] Gray L., Griffeath D., “The ergodic theory of traffic jams”, J. Stat. Phys., 105:3/4 (2001), 413–452 | DOI | MR | Zbl
[5] Kanai M., Nishinary K., Tokihiro T., “Exact solution and asymptotic behaviour of the asymmetric simple exclusion process on a ring”, J. Phys. A: Math. Gen., 39:29 (2006), 9071 | DOI | MR | Zbl
[6] Kanai M., “Two-lane traffic-flow model with an exact steady-state solution”, Phys. Rev. E, 82 (2010), 066107 | DOI | MR
[7] Yashina M. V., Tatashev A. G., “Traffic model based on synchronous and asynchronous exclusion processes”, Math. Method. Appl. Sci., 43:14 (2020), 8136–8146 | DOI | MR | Zbl
[8] Wolfram S., “Statistical mechanics of cellular automata”, Rev. Mod. Phys., 55:3 (1983), 601–644 | DOI | MR | Zbl
[9] Spitzer F., “Interaction of Markov processes”, Advances in Math., 5:2 (1970), 246–290 | DOI | MR | Zbl
[10] Biham O., Middleton A. A., Levine D., “Self-organization and a dynamical transition in traffic-flow models”, Phys. Rev. A, 46:10 (1992), R6124–R6127 | DOI | MR
[11] Angel O., Horloyd A. E., Martin J. B., “The Jammed phase of the Biham–Middelton–Levine traffic flow model”, Electron. Commun. Probab., 10 (2005), 167–178 | DOI | MR | Zbl
[12] Moradi H. R., Zardadi A., Heydarbeygi Z., “The number of collisions in Biham–Middleton–Levine model on a square lattice with limited number of cars”, Applied Math. E-Notes, 2019, 243–249 | MR | Zbl
[13] Buslaev A. P., Yashina M. V., “On holonomic mathematical $F$-pendulum”, Math. Method. Appl. Sci., 39:16 (2016), 4820–4828 | DOI | MR | Zbl
[14] Bugaev A. S., Buslaev A. P., Kozlov V. V., Yashina M. V., “Distributed problems of monitoring and modern approaches to traffic modeling”, 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), IEEE, Washington, 2011, 477–481 | DOI | MR
[15] Kozlov V. V., Buslaev A. P., Tatashev A. G., “On synergy of totally connected flows on chainmails”, Proceed. of International Conference of CMMSE (Spain, 2013), v. 3, 861–874
[16] Kozlov V. V., Buslaev A. P., Tatashev A. G., “Monotonic walks on a necklace and a coloured dynamic vector”, International Journal of Computer Math., 92:9 (2015), 1910–1920 | DOI | MR | Zbl
[17] Kozlov V. V., Buslaev A. P., Tatashev A. G., “A dynamic communication system on a network”, Journal of Computational and Applied Math., 2015, 247–261 | DOI | MR | Zbl
[18] Tatashev A. G., Yashina M. V., “Spectrum of elementary cellular automata and closed chains of contours”, Machines, 7:2 (2019), 28 pp. | DOI
[19] Buslaev A. P., Fomina M. Yu., Tatashev A. G., Yashina M. V., “On discrete flow networks model spectra: statements, simulation, hypotheses”, Journal of Physics: Conference Series, 1053 (2018), 012034, 1–7 | DOI
[20] Bugaev, A. S., Tatashev, A. G. and Yashina, M. V., “Spectrum of a Continuous Closed Symmetric Chain with an Arbitrary Number of Contours”, Mathematical Models and Computer Simulations, 13:6 (2021), 1014–1027 | DOI | DOI | MR | Zbl
[21] Yashina M. V., Tatashev A. G., “Spectral cycles and average velocity of clusters in discrete two-contours system with two nodes”, Math. Method. Appl. Sci., 43:7 (2020), 4303–4316 | DOI | MR | Zbl
[22] Yashina M. V., Tatashev A. G., Fomina M. Y., “Optimization of velocity mode in buslaev two-contour networks via competition resolution rules”, International Journal of Interactive Mobile Technologies, 14:10 (2020), 61–73 | DOI
[23] Myshkis, P. A., Tatashev, A. G. and Yashina, M. V., “Cluster Motion in a Two-Contour System with Priority Rule for Conflict Resolution”, Journal of Computer and Systems Sciences International, 59:3 (2020), 311–321 | DOI | DOI | MR | Zbl
[24] Golovneva, E. V., “On Ergodic Properties Homogeneous Markov Chains”, Vladikavkaz Math. J., 14:1 (2012), 37–46 (in Russian) | DOI | MR | Zbl
[25] Kemeny J. G., Snell J. L., Finite Markov Chains, Springer-Verlag, N. Y.–Berlin–Heidelberg–Tokyo, 1976 | MR | Zbl