@article{VMJ_2024_26_1_a10,
author = {A. E. Pasenchuk},
title = {On reversibility and the spectrum of the {Wiener{\textendash}Hopf} integral operator in a countably-normed space of functions with power behavior at infinity},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {132--141},
year = {2024},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_1_a10/}
}
TY - JOUR AU - A. E. Pasenchuk TI - On reversibility and the spectrum of the Wiener–Hopf integral operator in a countably-normed space of functions with power behavior at infinity JO - Vladikavkazskij matematičeskij žurnal PY - 2024 SP - 132 EP - 141 VL - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMJ_2024_26_1_a10/ LA - ru ID - VMJ_2024_26_1_a10 ER -
%0 Journal Article %A A. E. Pasenchuk %T On reversibility and the spectrum of the Wiener–Hopf integral operator in a countably-normed space of functions with power behavior at infinity %J Vladikavkazskij matematičeskij žurnal %D 2024 %P 132-141 %V 26 %N 1 %U http://geodesic.mathdoc.fr/item/VMJ_2024_26_1_a10/ %G ru %F VMJ_2024_26_1_a10
A. E. Pasenchuk. On reversibility and the spectrum of the Wiener–Hopf integral operator in a countably-normed space of functions with power behavior at infinity. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 1, pp. 132-141. http://geodesic.mathdoc.fr/item/VMJ_2024_26_1_a10/
[1] Presdorf, Z., Some Classes of Singular Equation, Mir, M., 1979, 493 pp. (in Russian)
[2] Gohberg, I. C. and Fel'dman, I. A., Convolution Equations and Projection Methods for their Solution, Nauka, M., 1971, 352 pp. (in Russian) | MR
[3] Gahov, F. D., Boundary Problems, Nauka, M., 1977, 638 pp. (in Russian)
[4] Gokhberg, I. C. and Krein, M. G., “Systems of Integral Equations on the Half-Line with Kernels Depending on the Difference of the Arguments”, Uspekhi Matematicheskikh Nauk, 13:2(80) (1958), 3–72 (in Russian) | Zbl
[5] Gohberg, I. C. and Krupnik, I. A., Introduction to the Theory of One-Dimensional Singular Integral Equations, Shtiinca, Kishinev, 1973, 426 pp. (in Russian) | MR
[6] Pasenchuk, A. E., Discrete Convolution-Type Operators in Classes of Sequences with Power Behavior at Infinity, SFU Publ., Rostov-on-Don, 2013, 279 pp. (in Russian)
[7] “On Singular Operators in Spaces of Infinitely Differentiable and Generalized Functions”, Mathematical Research, 6, no. 3, Shtiinca, Kishinev, 1971, 168–179 (in Russian)