@article{VMJ_2023_25_4_a9,
author = {M. M. Rahmatullaev and M. A. Rasulova},
title = {Description of weakly periodic ground states for the {Potts} model with external field and a countable set of spin values on a {Cayley} tree},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {103--119},
year = {2023},
volume = {25},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a9/}
}
TY - JOUR AU - M. M. Rahmatullaev AU - M. A. Rasulova TI - Description of weakly periodic ground states for the Potts model with external field and a countable set of spin values on a Cayley tree JO - Vladikavkazskij matematičeskij žurnal PY - 2023 SP - 103 EP - 119 VL - 25 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a9/ LA - ru ID - VMJ_2023_25_4_a9 ER -
%0 Journal Article %A M. M. Rahmatullaev %A M. A. Rasulova %T Description of weakly periodic ground states for the Potts model with external field and a countable set of spin values on a Cayley tree %J Vladikavkazskij matematičeskij žurnal %D 2023 %P 103-119 %V 25 %N 4 %U http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a9/ %G ru %F VMJ_2023_25_4_a9
M. M. Rahmatullaev; M. A. Rasulova. Description of weakly periodic ground states for the Potts model with external field and a countable set of spin values on a Cayley tree. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 4, pp. 103-119. http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a9/
[1] Sinai, Ya. G., Theory of Phase Transition: Rigorous Results, Pergamon Press, Oxford–New York, 1982 | MR
[2] Minlos R. A., Introduction to Mathematical Statistical Physics, Univ. Lect. Ser., 19, Amer. Math. Soc., 1999, 103 pp. | DOI | MR
[3] Ganikhodzhaev, N. N. and Rozikov, U. A., “On Periodic Gibbs Distributions of the Ising Model on the Bethe Lattice”, Uzbek Mathematical Journal, 4 (1995), 8–18 (in Russian)
[4] Martin J., Rozikov U. A., Suhov Y., “A three state Hard-Core model on a Cayley tree”, J. Nonlin. Math. Phys., 12:3 (2005), 432–448 | DOI | MR | Zbl
[5] Rozikov U. A., “A constructive description of ground states and Gibbs measures for Ising model with two-step interactions on Cayley tree”, J. Stat. Phys., 122:2 (2006), 217–235 | DOI | MR | Zbl
[6] Rozikov, U. A. and Shoyusupov, Sh. A., “Gibbs Measures for the SOS Model with Four States on Cayley Tree”, Theoretical and Mathematical Physics, 149:1 (2006), 1312–1323 | DOI | DOI | MR | Zbl
[7] Rozikov, U. A. and Khakimov, R. M., “Periodic Gibbs Measures for the Potts Model on the Cayley Tree”, Theoretical and Mathematical Physics, 175 (2013), 699–709 | DOI | DOI | MR | MR | Zbl
[8] Rasulova, M. A., “Periodic Gibbs Measures for the Potts-SOS Model on a Cayley Tree”, Theoretical and Mathematical Physics, 199 (2019), 586–592 | DOI | DOI | MR | Zbl
[9] Rozikov, U. A. and Rakhmatullaev, M. M., “Weakly Periodic Ground States and Gibbs Measures for the Ising Model with Competing Interactions on the Cayley Tree”, Theoretical and Mathematical Physics, 160:3 (2009), 1292–1300 | DOI | DOI | MR | Zbl
[10] Rahmatullaev M. M., “Description of weak periodic ground states of Ising model with competing interactions on Cayley tree”, Appl. Math. Inf. Science, 4:2 (2010), 237–251 | MR | Zbl
[11] Botirov, G. I. and Rozikov, U. A., “Potts Model with Competing Interactions on the Cayley Tree: The Contour Method”, Theoretical and Mathematical Physics, 153:1 (2007), 1423–1433 | DOI | DOI | MR | Zbl
[12] Rasulova, M. A. and Rahmatullaev, M. M., “Periodic and Weakly Periodic Ground States for Potts Model with Competing Interactions on the Cayley Tree”, Siberian Advances in Mathematics, 26 (2016), 215–229 | DOI | DOI | MR | Zbl
[13] Rahmatullaev, M. M., “Weakly Periodic Gibbs Measures and Ground States for the Potts Model with Competing Interactions on the Cayley Tree”, Theoretical and Mathematical Physics, 176:3 (2013), 1236–1251 | DOI | DOI | MR | Zbl
[14] Rahmatullaev, M. M. and Rasulova, M. A., “Existence of Weakly Periodic Ground States for Potts Model with Competing Interactions on the Cayley Tree”, Reports of the Academy of Sciences of the Republic of Uzbekistan, 2013, no. 3, 10–13 (in Russian)
[15] Ganikhodjaev N. N., Rozikov U. A., “The potts model with countable set of spin values on a cayley tree”, Lett. Math. Phys., 75 (2006), 99–109 | DOI | MR | Zbl
[16] Botirov G. I., Rakhmatullaev M. M., “Ground states for Potts model with a countable set of spin values on a Cayley tree”, Algebra, Complex Analysis and Pluripotential Theory, USUZCAMP 2017, Springer Proceedings in Mathematics Statistics, 264, Springer, 2018, 59–71 | DOI | MR | Zbl
[17] Botirov, G. I. and Qayumov, U. U., “Ground States for the Potts Model with Competing Interactions and a Countable Set of Spin Values on a Cayley Tree”, Theoretical and Mathematical Physics, 209:2 (2021), 1633–1642 | DOI | DOI | MR | Zbl
[18] Murtazaev, A. K., Babaev, A. B., Magomedov, M. A., Kassan-Ogly, F. A. and Proshkin, A. I., “Frustrations and phase Transitions in the Three-Vertex Potts Model with Next-Nearest-Neighbor Interactions on a Triangular Lattice”, JETP Letters, 100 (2014), 242–246 | DOI | DOI
[19] Kassan-Ogly F. A., “One-dimensional 3-state and 4-state standard Potts models in magnetic field”, Phase Transitions, 71:1 (2000), 39–55 | DOI
[20] Rahmatullaev, M. M. and Rasulova, M. A., “Periodic Ground States for the Potts Model with External Field and a Countable Set of Spin Values on the Cayley Tree”, Mathematical Notes, 112 (2022), 116–125 | DOI | DOI | MR | Zbl
[21] Kargapalov, M. I. and Merzlyakov, Yu. I., Osnovy teorii grupp, 3-e izd., Nauka, M., 1982 (in Russian) | MR
[22] Rozikov U. A., Gibbs Measures on Cayley Trees, World Scientific, 2013, 404 pp. | DOI | MR | Zbl
[23] Ganikhodjaev, N. N., “Group Presentations and Automorphisms of the Cayley Tree”, Reports of the Academy of Sciences of the Republic of Uzbekistan, 1994, no. 5, 3–5 (in Russian)
[24] Rozikov U. A., “On $q$-component models on Cayley tree: contour method”, Lett. Math. Phys., 71 (2005), 27–38 | DOI | MR | Zbl