Periodic trajectories of nonlinear circular gene network models
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 4, pp. 80-90
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to qualitative analysis of two dynamical systems simulating circular gene network functioning. The equations of three-dimensional dynamical system contain monotonically decreasing smooth functions describing negative feedback. A six-dimensional dynamical system consists of three equations with monotonically decreasing smooth functions and three equations with monotonically increasing smooth functions characterizing negative and positive feedback. In both models the process of degradation is described by nonlinear smooth functions. In order to localize cycles for both systems invariants domains are constructed. It is shown that each of two systems has a unique stationary point in the invariant domain, and conditions under which this point is hyperbolic are found. The main result of the paper is the proof of existence of a cycle in the invariant subdomain from which the trajectories can not pass to other subdomains obtained by discretization of the phase portrait. The cycles of three- and six-dimensional systems bound two-dimensional invariant surfaces, on which the trajectories of these dynamical systems lie.
@article{VMJ_2023_25_4_a7,
     author = {L. S. Minushkina},
     title = {Periodic trajectories of nonlinear circular gene network models},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {80--90},
     year = {2023},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a7/}
}
TY  - JOUR
AU  - L. S. Minushkina
TI  - Periodic trajectories of nonlinear circular gene network models
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2023
SP  - 80
EP  - 90
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a7/
LA  - ru
ID  - VMJ_2023_25_4_a7
ER  - 
%0 Journal Article
%A L. S. Minushkina
%T Periodic trajectories of nonlinear circular gene network models
%J Vladikavkazskij matematičeskij žurnal
%D 2023
%P 80-90
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a7/
%G ru
%F VMJ_2023_25_4_a7
L. S. Minushkina. Periodic trajectories of nonlinear circular gene network models. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 4, pp. 80-90. http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a7/

[1] Kolesov, A. Yu., Rozov, N. Kh. and Sadovnichii, V. A., “Periodic Solutions of Travelling-Wave Type in Circular Gene Networks”, Izvestiya: Mathematics, 80:3 (2016), 523–548 | DOI | DOI | MR | Zbl

[2] Volkov, E. I. and Zhurov, B. A., “Dynamic Behaviour of an Isolated Repressilator with Feedback”, Radiophysics and Quantum Electronics, 56:10 (2014), 697–707 | DOI

[3] Hastings S., Tyson J., Webster D., “Existence of periodic solutions for negative feedback cellular control system”, J. Differ. Equ., 25 (1977), 39–64 | DOI | MR | Zbl

[4] Glass L., Pasternack J. S., “Stable oscillations in mathematical models of biological control systems”, J. Math. Biology, 6 (1978), 207–223 | DOI | MR | Zbl

[5] Golubyatnikov, V. P. and Minushkina, L. S., “On Uniqueness of a Cycle in One Circular Gene Network Model”, Siberian Mathematical Journal, 63:1 (2022), 79–86 | DOI | MR | Zbl

[6] Golubyatnikov V. P., Minushkina L. S., “On uniqueness and stability of a cycle in one gene network”, Sib. Electr. Math. Reports, 18:1 (2021), 464–473 | DOI | MR | Zbl

[7] Golubyatnikov, V. P. and Ivanov, V. V., “Uniqueness and Stability of a Cycle in Three-Dimensional Block Linear Circular Gene Network Models”, Siberian Journal of Pure and Applied Mathematics, 18:4 (2018), 19–28 (in Russian) | DOI | Zbl

[8] Chumakov, G. A. and Chumakova, N. A., “Homoclinic Cycles in One Gene Network Model”, Mathematical Notes of NEFU, 21:14 (2014), 97–106 (in Russian) | Zbl

[9] Elowitz M. B., Leibler S., “A synthetic oscillatory network of transcriptional regulators”, Nature, 403 (2000), 335–338 | DOI

[10] Potapov, I. S. and Volkov, E. I., “Dynamics Analysis of Coupled Synthetic Genetic Repressilators”, Computer Research and Modeling, 2:4 (2010), 403–418 (in Russian) | DOI

[11] Gaidov, Yu. A. and Golubyatnikov, V. P., “On Some Nonlinear Dynamical Systems Modelling Asymmetric Gene Networks”, Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 7:2 (2007), 19–27 (in Russian) | Zbl

[12] Kazantsev, M. V., “On Some Properties of Domain Graphs of Dynamical Systems”, Sibirskii Zhurnal Insdustrial'noi Matematiki, 18:4 (2015), 42–48 (in Russian) | DOI | MR | Zbl

[13] Glass L., “Combinatorial and topological methods in nonlinear chemical kinetics”, J. Chem. Phys., 63:4 (1975), 1325–1335 | DOI

[14] Vyshnegradsky, I. A., “On Direct-Action Regulators”, Theory of Automatic Control (Lirearized Problems), USSR AS, M., 1949, 41–79 (in Russian)

[15] Postnikov, M. M., Stable Polynomials, Nauka, M., 1981, 176 pp. (in Russian) | MR

[16] Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and Its Applications, 54, Cambridge University, Cambridge, 1995, 822 pp. | MR | Zbl

[17] Hartman, P., Ordinary Differential Equations, John Wiley Sons, New York, 1964, 612 pp. | MR | Zbl

[18] Ayupova, N. B., Golubyatnikov, V. P. and Minushkina, L. S., “On Invariant Surfaces in the Phase Portraits of Models of Circular Gene Networks”, Journal of Applied and Industrial Mathematics, 16 (2022), 589–595 | DOI | MR

[19] Kirillova, N. E., “On Invariant Surfaces in Gene Network Models”, Journal of Applied and Industrial Mathematics, 14:4 (2020), 666–671 | DOI | DOI | MR | Zbl

[20] Minushkina, L. S., “Phase Portraits of a Block Linear Dynamical System in One Circular Gene Network Model”, Mathematical Notes of NEFU, 28:2 (2021), 34–46 (in Russian) | DOI

[21] Golubyatnikov V. P., Minushkina L. S., “On geometric structure of phase portraits of some piecewise linear dynamical systems”, Tbilisi Math. J., 7, Special Issue (2021), 49–56 | DOI

[22] Golubyatnikov V. P., Ayupova N. B., Kirillova N. E., “On oscillations in a gene network with diffusion”, Mathematics, 11:8 (2023), 1951 | DOI

[23] Golubyatnikov V. P., Kirillova N. E., “On cycles in models of functioning of circular gene networks”, J. Math. Sci., 246:6 (2020), 779–788 | DOI | MR