@article{VMJ_2023_25_4_a5,
author = {A. V. Kostin},
title = {On analogues of the {Fuhrmann's} theorem on the {Lobachevsky} plane},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {58--67},
year = {2023},
volume = {25},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a5/}
}
A. V. Kostin. On analogues of the Fuhrmann's theorem on the Lobachevsky plane. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 4, pp. 58-67. http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a5/
[1] Kubota T., “On the extended Ptolemy's theorem in hyperbolic geometry”, Science Reports of the Tohoku University. Ser. 1: Physics, Chemistry, Astronomy, 2 (1912), 131–156
[2] Shirokov, P. A., “Etudes on the Lobachevskii Geometry”, Izvestia Fiziko-matematicheskogo obschestva pri KGU, seria 2, 24:1 (1924), 26–32 (in Russian)
[3] Casey J., A seqyel to the first six books of the Elements of Euclid, containing an easy introduction to modern geometry, with numerous examples, 5th ed., Hodges Figgis and Co., Dublin, 1888
[4] Abrosimov, N. V. and Mikaiylova, L. A., “Casey's Theorem in Hyperbolic Geometry”, Siberian Electronic Mathematical Reports, 12 (2015), 354–360 | DOI | MR | Zbl
[5] Kostin, A. V. and Kostina, N. N., “An Interpretation of Casey's Theorem and its Hyperbolic Analogue”, Siberian Electronic Mathematical Reports, 13 (2016), 242–251 (in Russian) | DOI | MR | Zbl
[6] Kostin, A. V., “On generalizations of Ptolemy's theorem on the Lobachevsky plane”, Siberian Electronic Mathematical Reports, 19:2 (2022), 404–414 (in Russian) | DOI | MR
[7] Abrosimov N. V., Aseev V. V., “Generalizations of Casey's Theorem For Higher Dimensions”, Lobachevskii J. Math., 39 (2018), 1–12 | DOI | MR | Zbl
[8] Maehara H., Martini H., “Bipartite sets of spheres and Casey-type theorems”, Results Math., 74 (2019), 47 | DOI | MR | Zbl
[9] Astapov, N. S. and Astapov, I. S., “The Variety of Generalizations of the Ptolemy's Theorem”, Dal'nevostochnyi Matematicheskii Zhurnal, 19:2 (2019), 129–137 (in Russian) | MR | Zbl
[10] Nestorovich, N. M., Geometric Constructions in the Lobachevskii Plane, GITTL, M.–L., 1951, 304 pp. (in Russian) | MR
[11] Rosenfeld, B. A., Non-Euclidean Spaces, Nauka, M., 1969, 548 pp. (in Russian)
[12] Yaglom, I. M., “Complex Numbers and their application to the Geometry”, Matematicheskoe prosveschenie, 6, 1961, 60–106 (in Russian)
[13] Mikenberg, M. A., The Laguerre Geometry and its Analogue, Dis. \ldots Candidate of Physical and Mathematical Sciences, Kazan, 1994 | Zbl
[14] Skopets, Z. A. and Yaglom, I. M., “Laguerre Transformations of the Lobachevskii Plane and Linear Fractional Transformations of a Double Variable”, Problems of the Differential and Non-Euclidean Geometries, Izdatelstvo MGPI, M., 1965, 366–374 (in Russian) | MR
[15] Kostin, A. V., “Problem of Shadow and Surface of Constant Curvature”, Siberian Electronic Mathematical Reports, 20:1 (2023), 150–164 (in Russian) | DOI | MR