@article{VMJ_2023_25_4_a2,
author = {A. O. Vatulyan and S. A. Nesterov},
title = {Size-dependent model of electroelasticity for a solid coated cylinder},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {29--40},
year = {2023},
volume = {25},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a2/}
}
A. O. Vatulyan; S. A. Nesterov. Size-dependent model of electroelasticity for a solid coated cylinder. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 4, pp. 29-40. http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a2/
[1] Li X.-F., Peng X.-L., Lee K. Y., “Radially polarized functionally graded piezoelectric hollow cylinders as sensors and actuators”, Eur. J. Mech. – A/Solids, 29:4 (2010), 704–713 | DOI | Zbl
[2] Lam D. C., Yang F., Chong A., Wang J., Tong P., “Experiments and theory in strain gradient elasticity”, J. Mech. Phys. Solids, 51:8 (2003), 1477–1508 | DOI | Zbl
[3] Aifantis E. C., “Gradient effects at the macro, micro- and nano- scales”, J. Mech. Behav. Mater., 5 (1994), 335–353 | DOI
[4] Adelman N., Stavsky Ye., Segal E., “Axisymmetric vibrations of radially polarized piezoelectric ceramic cylinders”, Journal of Sound and Vibration, 38:2 (1975), 245–254 | DOI | Zbl
[5] Parton, V. Z. and Kudryavtsev, B. A., Electromagnetoelasticity of Piezoelectric and Electrically Conductive Bodies, Nauka, M., 1988, 472 pp. (in Russian)
[6] Vatulyan, A. O. and Kondratiev, V. S., “Oscillations of an Inhomogeneous Piezoceramic Cylinder in the Presence of Attenuation”, Problems of Strength and Plasticity, 78:4 (2016), 406–414 (in Russian) | DOI | MR
[7] Lomakin, E. V., Lurie, S. A., Rabinskiy, L. N. and Solyaev, Y. O., “On the Refined Stress Analysis in the Applied Elasticity Problems Accounting of Gradient Effects”, Doklady Physics, 64:12 (2019), 482–486 (in Russian) | DOI
[8] Toupin R. A., “Elastic materials with couple stresses”, Arch. Rational Mech. Anal., 11 (1962), 385–414 | DOI | MR | Zbl
[9] Mindlin R. D., “Micro-structure in linear elasticity”, Arch. Rational Mech. Anal., 16 (1964), 51–78 | DOI | MR | Zbl
[10] Lurie, S. A., Pham, T. and Soliaev, J. O., “Gradient Model of Thermoelasticity and its Application for the Modeling of thin Layered Composite Structures”, Journal of Composite Mechanics and Design, 18:3 (2012), 440–449
[11] Hadjesfandiari A. R., “Size-dependent piezoelectricity”, Int. J. Solids Struct., 50:18 (2013), 2781–2791 | DOI
[12] Shodja H. M., Ghazisaeidi M., “Effects of couple stress on anti-plane problems of piezoelectric media with inhomogeneities”, Eur. J. Mech. – A/Solids, 26 (2007), 647–658 | DOI | MR | Zbl
[13] Yang X. M., Hu Y. T., Yang J. S., “Electric field gradient effects in anti-plane problems of polarized ceramics”, Int. J. Solids Struct., 41:24–25 (2004), 6801–6811 | DOI | Zbl
[14] Lurie, M. V., “Lame Problems in the Gradient Theory of Elasticity”, Reports of Academy of Sciences of the USSR, 181:5 (1968), 1087–1089 (in Russian) | MR | Zbl
[15] Papargyri-Beskou S., Tsinopoulos S., “Lame's strain potential method for plane gradient elasticity problems”, Arch. Appl. Mech., 85:9–10 (2015), 1399–1419 | DOI | Zbl
[16] Gao X. L., Park S. K., “Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem”, Int. J. Solids Struct., 44:22–23 (2007), 7486–7499 | DOI | MR | Zbl
[17] Chu L., Dui G., “Exact solutions for functionally graded micro-cylinders in first gradient elasticity”, Int. J. Mech. Sci., 48 (2018), 366–373 | DOI
[18] Vatulyan, A. O., Nesterov, S. A. and Yurov, V. O., “Investigation of the Stress-Strain State of a Hollow Cylinder with a Coating Based on the Gradient Model of Thermoelasticity”, PNRPU Mechanics Bulletin, 2021, no. 4, 60–70 (in Russian) | DOI
[19] Li A., Zhou S., Wang B. A., “Size-dependent bilayered microbeam model based on strain gradient elasticity theory”, Compos. Struct., 108 (2014), 259–266 | DOI
[20] Vatulyan, A. O. and Nesterov, S. A., “Gradient Model of Bending of a Composite Beam”, Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 19:2 (2022), 6–16 (in Russian) | DOI
[21] Vatulyan A. O., Nesterov S. A., “Modeling of thermoelastic deformation of a thin-layer «coating-substrate» system”, J. Phys.: Conf. Ser., 2317 (2022), 012012 | DOI | MR
[22] Dini A., Shariati M., Zarghami F., Amin Nematollahi M., “Size dependent analysis of a functionally graded piezoelectric micro cylinder based on the strain gradient theory with the consideration of flexoelectric effect: plane strain problem”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42 (2020), 410–432 | DOI | MR
[23] Zheng Y., Chu L., Dui G., Zhu X., “Modeling and simulation of functionally graded flexoelectric micro-cylinders based on the mixed finite element method”, Applied Physics A, 127 (2021), 153 | DOI
[24] Chu L., Li Y., Dui G., “Size-dependent electromechanical coupling in functionally graded flexoelectric nanocylinders”, Acta Mech., 230 (2019), 3071–3086 | DOI | MR | Zbl
[25] Solyaev Y., Lurie S., “Pure bending of the piezoelectric layer in second gradient electroelasticity theory”, Acta Mech., 230 (2019), 4197–4211 | DOI | MR | Zbl
[26] Vatulyan, A. O., Nesterov, S. A. and Yurov, V. O., “Solution of the gradient Thermoelasticity Problem for a Cylinder with a Heat-Protected Coating”, Computational Continuum Mechanics, 14:3 (2021), 253–264 (in Russian) | DOI | MR