Size-dependent model of electroelasticity for a solid coated cylinder
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 4, pp. 29-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The study of the problem of gradient electroelasticity for a solid radially polarized cylinder with a coating is carried out. A constant normal mechanical load acts on the non-electrodized side surface of the coating. The electroelasticity model includes one gradient mechanical parameter. This takes into account\eject the effect of the strain gradient, but does not take into account the effect of the gradient of the electric field strength. In the framework of the gradient formulation, boundary conditions and conjugation conditions additional to the classical formulation are set. After eliminating the electric potential, the problem is reduced to the problem of the gradient theory of elasticity with stiffened elastic moduli. In the case of a homogeneous coating, analytical expressions are obtained for finding radial displacements and stresses. In the case of an inhomogeneous coating, the numerical solution is based on the targeting method. Calculations of the displacements, Cauchy stresses and moment stresses of both homogeneous and inhomogeneous coatings are carried out. A comparative analysis of the results obtained on the basis of classical and gradient electroelasticity models depending on the values of the scale parameter is carried out. The influence of the laws of heterogeneity of the material characteristics of the coating on the distribution of displacements has been studied. It was found that: 1) the Cauchy stresses experience a jump at the boundary between the cylinder and the coating; 2) couple stresses take a peak value on the mating surface; 3) an increase in the scale parameter reduces the values of radial displacements.
@article{VMJ_2023_25_4_a2,
     author = {A. O. Vatulyan and S. A. Nesterov},
     title = {Size-dependent model of electroelasticity for a solid coated cylinder},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {29--40},
     year = {2023},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a2/}
}
TY  - JOUR
AU  - A. O. Vatulyan
AU  - S. A. Nesterov
TI  - Size-dependent model of electroelasticity for a solid coated cylinder
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2023
SP  - 29
EP  - 40
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a2/
LA  - ru
ID  - VMJ_2023_25_4_a2
ER  - 
%0 Journal Article
%A A. O. Vatulyan
%A S. A. Nesterov
%T Size-dependent model of electroelasticity for a solid coated cylinder
%J Vladikavkazskij matematičeskij žurnal
%D 2023
%P 29-40
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a2/
%G ru
%F VMJ_2023_25_4_a2
A. O. Vatulyan; S. A. Nesterov. Size-dependent model of electroelasticity for a solid coated cylinder. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 4, pp. 29-40. http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a2/

[1] Li X.-F., Peng X.-L., Lee K. Y., “Radially polarized functionally graded piezoelectric hollow cylinders as sensors and actuators”, Eur. J. Mech. – A/Solids, 29:4 (2010), 704–713 | DOI | Zbl

[2] Lam D. C., Yang F., Chong A., Wang J., Tong P., “Experiments and theory in strain gradient elasticity”, J. Mech. Phys. Solids, 51:8 (2003), 1477–1508 | DOI | Zbl

[3] Aifantis E. C., “Gradient effects at the macro, micro- and nano- scales”, J. Mech. Behav. Mater., 5 (1994), 335–353 | DOI

[4] Adelman N., Stavsky Ye., Segal E., “Axisymmetric vibrations of radially polarized piezoelectric ceramic cylinders”, Journal of Sound and Vibration, 38:2 (1975), 245–254 | DOI | Zbl

[5] Parton, V. Z. and Kudryavtsev, B. A., Electromagnetoelasticity of Piezoelectric and Electrically Conductive Bodies, Nauka, M., 1988, 472 pp. (in Russian)

[6] Vatulyan, A. O. and Kondratiev, V. S., “Oscillations of an Inhomogeneous Piezoceramic Cylinder in the Presence of Attenuation”, Problems of Strength and Plasticity, 78:4 (2016), 406–414 (in Russian) | DOI | MR

[7] Lomakin, E. V., Lurie, S. A., Rabinskiy, L. N. and Solyaev, Y. O., “On the Refined Stress Analysis in the Applied Elasticity Problems Accounting of Gradient Effects”, Doklady Physics, 64:12 (2019), 482–486 (in Russian) | DOI

[8] Toupin R. A., “Elastic materials with couple stresses”, Arch. Rational Mech. Anal., 11 (1962), 385–414 | DOI | MR | Zbl

[9] Mindlin R. D., “Micro-structure in linear elasticity”, Arch. Rational Mech. Anal., 16 (1964), 51–78 | DOI | MR | Zbl

[10] Lurie, S. A., Pham, T. and Soliaev, J. O., “Gradient Model of Thermoelasticity and its Application for the Modeling of thin Layered Composite Structures”, Journal of Composite Mechanics and Design, 18:3 (2012), 440–449

[11] Hadjesfandiari A. R., “Size-dependent piezoelectricity”, Int. J. Solids Struct., 50:18 (2013), 2781–2791 | DOI

[12] Shodja H. M., Ghazisaeidi M., “Effects of couple stress on anti-plane problems of piezoelectric media with inhomogeneities”, Eur. J. Mech. – A/Solids, 26 (2007), 647–658 | DOI | MR | Zbl

[13] Yang X. M., Hu Y. T., Yang J. S., “Electric field gradient effects in anti-plane problems of polarized ceramics”, Int. J. Solids Struct., 41:24–25 (2004), 6801–6811 | DOI | Zbl

[14] Lurie, M. V., “Lame Problems in the Gradient Theory of Elasticity”, Reports of Academy of Sciences of the USSR, 181:5 (1968), 1087–1089 (in Russian) | MR | Zbl

[15] Papargyri-Beskou S., Tsinopoulos S., “Lame's strain potential method for plane gradient elasticity problems”, Arch. Appl. Mech., 85:9–10 (2015), 1399–1419 | DOI | Zbl

[16] Gao X. L., Park S. K., “Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem”, Int. J. Solids Struct., 44:22–23 (2007), 7486–7499 | DOI | MR | Zbl

[17] Chu L., Dui G., “Exact solutions for functionally graded micro-cylinders in first gradient elasticity”, Int. J. Mech. Sci., 48 (2018), 366–373 | DOI

[18] Vatulyan, A. O., Nesterov, S. A. and Yurov, V. O., “Investigation of the Stress-Strain State of a Hollow Cylinder with a Coating Based on the Gradient Model of Thermoelasticity”, PNRPU Mechanics Bulletin, 2021, no. 4, 60–70 (in Russian) | DOI

[19] Li A., Zhou S., Wang B. A., “Size-dependent bilayered microbeam model based on strain gradient elasticity theory”, Compos. Struct., 108 (2014), 259–266 | DOI

[20] Vatulyan, A. O. and Nesterov, S. A., “Gradient Model of Bending of a Composite Beam”, Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 19:2 (2022), 6–16 (in Russian) | DOI

[21] Vatulyan A. O., Nesterov S. A., “Modeling of thermoelastic deformation of a thin-layer «coating-substrate» system”, J. Phys.: Conf. Ser., 2317 (2022), 012012 | DOI | MR

[22] Dini A., Shariati M., Zarghami F., Amin Nematollahi M., “Size dependent analysis of a functionally graded piezoelectric micro cylinder based on the strain gradient theory with the consideration of flexoelectric effect: plane strain problem”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42 (2020), 410–432 | DOI | MR

[23] Zheng Y., Chu L., Dui G., Zhu X., “Modeling and simulation of functionally graded flexoelectric micro-cylinders based on the mixed finite element method”, Applied Physics A, 127 (2021), 153 | DOI

[24] Chu L., Li Y., Dui G., “Size-dependent electromechanical coupling in functionally graded flexoelectric nanocylinders”, Acta Mech., 230 (2019), 3071–3086 | DOI | MR | Zbl

[25] Solyaev Y., Lurie S., “Pure bending of the piezoelectric layer in second gradient electroelasticity theory”, Acta Mech., 230 (2019), 4197–4211 | DOI | MR | Zbl

[26] Vatulyan, A. O., Nesterov, S. A. and Yurov, V. O., “Solution of the gradient Thermoelasticity Problem for a Cylinder with a Heat-Protected Coating”, Computational Continuum Mechanics, 14:3 (2021), 253–264 (in Russian) | DOI | MR