@article{VMJ_2023_25_4_a11,
author = {F. H. Haydarov},
title = {On normal subgroups of the group representation of the {Cayley} tree},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {135--142},
year = {2023},
volume = {25},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a11/}
}
F. H. Haydarov. On normal subgroups of the group representation of the Cayley tree. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 4, pp. 135-142. http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a11/
[1] Haydarov, F. H., “New Normal Subgroups for the Group Representation of the Cayley Tree”, Lobachevskii Journal of Mathematics, 39:2 (2018), 213–217 | DOI | MR | Zbl
[2] Rozikov, U. A. and Haydarov, F. H., “Normal Subgroups of Finite Index for the Group Represantation of the Cayley Tree”, TWMS Journal of Pure and Applied Mathematics, 5:2 (2014), 234–240 | MR | Zbl
[3] Cohen D. E. and Lyndon, R. C., “Free Bases for Normal Subgroups of Free Groups”, Transactions of the American Mathematical Society, 108 (1963), 526–537 | DOI | MR | Zbl
[4] Normatov, E. P. and Rozikov, U. A., “A Description of Harmonic Functions via Properties of the Group Representation of the Cayley Tree”, Mathematical Notes, 79 (2006), 399–407 | DOI | MR | Zbl
[5] Rozikov, U. A., Gibbs Measures on a Cayley Tree, World Scientific, Singapore, 2013 | DOI | MR
[6] Levgen, V. B., Natalia, V. B., Said, N. S. and Flavia, R. Z., “On the Conjugacy Problem for Finite-State Automorphisms of Regular Rooted Trees”, Groups, Geometry, and Dynamics, 7:2 (2013), 323–355 | DOI | MR
[7] Rozikov, U. and Haydarov, F., “Invariance Property on Group Representations of the Cayley Tree and Its Applications”, Results in Mathematics, 77:6 (2022), 241 | DOI | MR | Zbl
[8] Rozikov, U. A. and Haydarov F. H., “Four Competing Interactions for Models with an Uncountable Set of Spin Values on a Cayley Tree”, Theoretical and Mathematical Physics, 191 (2017), 910–923 | DOI | MR | Zbl
[9] Rozikov, U. A. and Haydarov, F. H., “Periodic Gibbs Measures for Models with Uncountable Set of Spin Values on a Cayley Tree”, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 18:1 (2015), 1–22 | DOI | MR | Zbl
[10] Haydarov, F. H. and Ilyasova, R. A., “On Periodic Gibbs Measures of the Ising Model Corresponding to New Subgroups of the Group Representation of a Cayley Tree”, Theoretical and Mathematical Physics, 210 (2022), 261–274 | DOI | MR | Zbl
[11] Malik, D. S, Mordeson, J. N. and Sen, M. K., Fundamentals of Abstract Algebra, McGraw-Hill Com, 1997
[12] Rose, H. E., A Course on Finite Groups, Springer Science and Business Media, 2009 | MR | Zbl