@article{VMJ_2023_25_4_a10,
author = {A. K. Urinov and K. T. Karimov},
title = {The {Tricomi{\textendash}Neymann} problem for a three-dimensional mixed-type equation with singular coefficients},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {120--134},
year = {2023},
volume = {25},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a10/}
}
TY - JOUR AU - A. K. Urinov AU - K. T. Karimov TI - The Tricomi–Neymann problem for a three-dimensional mixed-type equation with singular coefficients JO - Vladikavkazskij matematičeskij žurnal PY - 2023 SP - 120 EP - 134 VL - 25 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a10/ LA - ru ID - VMJ_2023_25_4_a10 ER -
%0 Journal Article %A A. K. Urinov %A K. T. Karimov %T The Tricomi–Neymann problem for a three-dimensional mixed-type equation with singular coefficients %J Vladikavkazskij matematičeskij žurnal %D 2023 %P 120-134 %V 25 %N 4 %U http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a10/ %G ru %F VMJ_2023_25_4_a10
A. K. Urinov; K. T. Karimov. The Tricomi–Neymann problem for a three-dimensional mixed-type equation with singular coefficients. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 4, pp. 120-134. http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a10/
[1] Frankl, F. I., Selected Works on Gas Dynamics, Nauka, M., 1973, 712 pp. (in Russian) | MR
[2] Vekua, I. N., Generalized Analytic Functions, GIFML, M., 1959, 628 pp. (in Russian)
[3] Bitsadze, A. V., “On a Three-Dimensional Analogue of the Tricomi Problem”, Sibirskii Matematicheskii Zhurnal, 3:5 (1962), 642–644 (in Russian) | MR | Zbl
[4] Ezhov, A. M. and Pulkin, S. P., “Estimation of the Solution of the Tricomi Problem for a Class of Equations of Mixed Type”, Doklady Akademii Nauk SSSR, 193:5 (1970), 978–980 (in Russian) | Zbl
[5] Nakhushev, A. M., “On a Three-Dimensional Analogue of the Gellerstedt Problem”, Differentsial'nye Uravneniya, 4:1 (1968), 52–62 (in Russian) | Zbl
[6] Ponomarev, S. M., “On the Theory of Boundary Value Problems for Equations of Mixed Type in Three-Dimensional Domains”, Doklady Akademii Nauk SSSR, 246:6 (1979), 1303–1306 (in Russian) | MR | Zbl
[7] Salakhiddinov, M. S. and Islomov, B., “Boundary Value Problems for an Equation of Mixed Elliptic-Hyperbolic Type in Space”, Uzbek Mathematical Journal, 1993, no. 3, 13–20 (in Russian)
[8] Urinov, A. K. and Karimov, K. T., “Tricomi Problem for a Three-Dimensional Mixed-Type Equation with Three Singular Coefficients”, ACTA NUUz, 2016, no. 2/1, 14–25 (in Russian)
[9] Urinov, A. K. and Karimov, K. T., “The Dirichlet Problem for a Three-Dimensional Equation of Mixed Type with Three Singular Coefficients”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 21:4 (2017), 665–683 (in Russian) | DOI | Zbl
[10] Nazipov, I. T., “Solution of the Spatial Tricomi Problem for a Singular Mixed-Type Equation by the Method of Integral Equations”, Russian Mathematics, 55:3 (2011), 61–76 | DOI | MR | Zbl
[11] Sabitov, K. B. and Karamova, A. A., “Spectral Properties of Solutions of the Tricomi Problem for a Mixed-Type Equation with Two Lines of Type Change and their Applications”, Izvestiya: Mathematics, 65:4 (2001), 133–150 | DOI | DOI | MR | Zbl
[12] Karimov, K. T., “Keldysh Problem for a Three-Dimensional Equation of Mixed Type with Three Singular Coefficients in a Semi-Infinite Parallelepiped”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 30:1 (2020), 31–48 | DOI | MR | Zbl
[13] Kapilevich, M. B., “On One Class of Horn's Hypergeometric Functions”, Differentsial'nye uravneniya, 4:8 (1968), 1465–1483 (in Russian)
[14] Bateman, G. and Erdeyi, A., Higher Transcendental Functions, Nauka, M., 1973, 296 pp. (in Russian) | MR
[15] Watson, G. N., Theory of Bessel Functions, Ed. IL, M., 1949, 798 pp. (in Russian)
[16] Salakhitdinov, M. S. and Urinov, A. K., On the Spectral Theory of Equations of Mixed Type, Mumtoz So'z, Tashkent, 2010, 355 pp. (in Russian)
[17] Mamedov, Ya. N., “On an Eigenvalue Problem for Equations of Mixed Type”, Differentsial'nye Uravneniya, 29:1 (1993), 95–103 (in Russian) | MR | Zbl
[18] Moiseev, E. I., “On the basis of sines and cosines”, Doklady Akademii Nauk SSSR, 275:4 (1984), 794–798 (in Russian) | MR | Zbl
[19] Kipriyanov, I. A., Singular Elliptic Boundary Value Problems, Nauka, M., 1997, 204 pp. (in Russian) | MR
[20] Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O. I., Integrals and Series, v. 3, Special Features, FizmatLit, M., 2003, 688 pp. (in Russian) | MR