On $b$-weakly demicompact operators on Banach lattices
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 4, pp. 20-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Aqzzouz and Elbour proved that an operator $T$ on a Banach lattice $E$ is $b$-weakly compact if and only if $\|Tx_{n}\|\rightarrow 0$ as $n\rightarrow \infty$ for each $b$-order bounded weakly null sequence $\{x_{n}\}$ in $E_{+}$. In this present paper, we introduce and study new concept of operators that we call $b$-weakly demicompact, use it to generalize known classes of operators which defined by $b$-weakly compact operators. An operator $T$ on a Banach lattice $E$ is said to be b-weakly demicompact if for every $b$-order bounded sequence $\{x_{n}\}$ in $E_{+}$ such that $x_{n}\rightarrow 0$ in $\sigma(E,E')$ and $\|x_{n}-Tx_{n}\|\rightarrow 0$ as $n\rightarrow \infty$, we have $\|x_{n}\|\rightarrow 0$ as $n\rightarrow \infty$. As consequence, we obtain a characterization of $KB$-spaces in terms of $b$-weakly demicompact operators. After that, we investigate the relationships between $b$-weakly demicompact operators and some other classes of operators on Banach lattices espaciallly their relationships with demi Dunford–Pettis operators and order weakly demicompact operators.
@article{VMJ_2023_25_4_a1,
     author = {H. Benkhaled and A. Jeribi},
     title = {On $b$-weakly demicompact operators on {Banach} lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {20--28},
     year = {2023},
     volume = {25},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a1/}
}
TY  - JOUR
AU  - H. Benkhaled
AU  - A. Jeribi
TI  - On $b$-weakly demicompact operators on Banach lattices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2023
SP  - 20
EP  - 28
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a1/
LA  - en
ID  - VMJ_2023_25_4_a1
ER  - 
%0 Journal Article
%A H. Benkhaled
%A A. Jeribi
%T On $b$-weakly demicompact operators on Banach lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2023
%P 20-28
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a1/
%G en
%F VMJ_2023_25_4_a1
H. Benkhaled; A. Jeribi. On $b$-weakly demicompact operators on Banach lattices. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 4, pp. 20-28. http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a1/

[1] Alpay, S., Altn, B. and Tonyal, C., “On Property (b) of Vector Lattices”, Positivity, 7 (2003), 135–139 | DOI | MR | Zbl

[2] Alpay, S. and Altin, B., “A Note on $b$-Weakly Compact Operators”, Positivity, 11 (2007), 575–582 | DOI | MR | Zbl

[3] Altin, B., “On $b$-Weakly Compact Operators on Banach Lattices”, Taiwanese Journal of Mathematics, 11:1 (2007), 143–150 | DOI | MR | Zbl

[4] Aqzzouz, B. and Elbour, A., “Some Properties of the Class of $b$-Weakly Compact Operators”, Complex Analysis and Operator Theory, 6 (2012), 1139–1145 | DOI | MR | Zbl

[5] Petryshyn, W. V., “Construction of Fixed Points of Demicompact Mappings in Hilbert Space”, Journal of Mathematical Analysis and Applications, 14:2 (1996), 276–284 | DOI | MR

[6] Jeribi, A., Spectral Theory and Applications of Linear Operators and Block Operator Matrices, Springer, 2015 | MR | Zbl

[7] Krichen, B. and O'Regan, D., “Weakly Demicompact Linear Operators and Axiomatic Measures of Weak Noncompactness”, Mathematica Slovaca, 69:6 (2019), 1403–1412 | DOI | MR | Zbl

[8] Benkhaled, H., Hajji., M. and Jeribi, A., “On the Class of Demi Dunford–Pettis Operators”, Rendiconti del Circolo Matematico di Palermo Series 2, 72:2 (2022), 901–911 | DOI | MR

[9] Benkhaled, H., Elleuch, A. and Jeribi, A., “The Class of Order Weakly Demicompact Operators”, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 114:2 (2020) | DOI | MR | Zbl

[10] Aliprantis, C. D. and Burkinshaw, O., Positive Operators, Springer, Berlin, 2006 | Zbl

[11] Meyer-Nieberg, P., Banach Lattices, Springer-Verlag, Berlin–Heidelberg–New York, 1991 | MR | Zbl

[12] Altin, B., “Some Properties of $b$-Weakly Compact Operators”, Gazi University Journal of Science, 18:3 (2005), 391–395

[13] Abramovich, Y. A. and Aliprantis, C. D., An Invitation to Operator Theory, Graduate Studies in Mathematics, 50, American Mathematical Society, Providence, 2002 | MR | Zbl

[14] Aqzzouz, B., Elbour, A. and Hmichane, J., “The Duality Problem for the Class of $b$-Weakly Compact Operators”, Positivity, 13:4 (2009), 683–692 | DOI | MR | Zbl

[15] Aqzzouz, B., Moussa, M. and Hmichane, J., “Some Characterizations of $b$-Weakly Compact Operators on Banach Lattices”, Mathematical Reports, 62 (2010), 315–324 | MR | Zbl