On $b$-weakly demicompact operators on Banach lattices
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 4, pp. 20-28

Voir la notice de l'article provenant de la source Math-Net.Ru

Aqzzouz and Elbour proved that an operator $T$ on a Banach lattice $E$ is $b$-weakly compact if and only if $\|Tx_{n}\|\rightarrow 0$ as $n\rightarrow \infty$ for each $b$-order bounded weakly null sequence $\{x_{n}\}$ in $E_{+}$. In this present paper, we introduce and study new concept of operators that we call $b$-weakly demicompact, use it to generalize known classes of operators which defined by $b$-weakly compact operators. An operator $T$ on a Banach lattice $E$ is said to be b-weakly demicompact if for every $b$-order bounded sequence $\{x_{n}\}$ in $E_{+}$ such that $x_{n}\rightarrow 0$ in $\sigma(E,E')$ and $\|x_{n}-Tx_{n}\|\rightarrow 0$ as $n\rightarrow \infty$, we have $\|x_{n}\|\rightarrow 0$ as $n\rightarrow \infty$. As consequence, we obtain a characterization of $KB$-spaces in terms of $b$-weakly demicompact operators. After that, we investigate the relationships between $b$-weakly demicompact operators and some other classes of operators on Banach lattices espaciallly their relationships with demi Dunford–Pettis operators and order weakly demicompact operators.
@article{VMJ_2023_25_4_a1,
     author = {H. Benkhaled and A. Jeribi},
     title = {On $b$-weakly demicompact operators on {Banach} lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {20--28},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a1/}
}
TY  - JOUR
AU  - H. Benkhaled
AU  - A. Jeribi
TI  - On $b$-weakly demicompact operators on Banach lattices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2023
SP  - 20
EP  - 28
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a1/
LA  - en
ID  - VMJ_2023_25_4_a1
ER  - 
%0 Journal Article
%A H. Benkhaled
%A A. Jeribi
%T On $b$-weakly demicompact operators on Banach lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2023
%P 20-28
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a1/
%G en
%F VMJ_2023_25_4_a1
H. Benkhaled; A. Jeribi. On $b$-weakly demicompact operators on Banach lattices. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 4, pp. 20-28. http://geodesic.mathdoc.fr/item/VMJ_2023_25_4_a1/