A Krengel type theorem for compact operators between locally solid vector lattices
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 3, pp. 76-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Suppose $X$ and $Y$ are locally solid vector lattices. A linear operator $T:X\to Y$ is said to be $nb$-compact provided that there exists a zero neighborhood $U\subseteq X$, such that $\overline{T(U)}$ is compact in $Y$; $T$ is $bb$-compact if for each bounded set $B\subseteq X$, $\overline{T(B)}$ is compact. These notions are far from being equivalent, in general. In this paper, we introduce the notion of a locally solid $AM$-space as an extension for $AM$-spaces in Banach lattices. With the aid of this concept, we establish a variant of the known Krengel's theorem for different types of compact operators between locally solid vector lattices. This extends [1, Theorem 5.7] (established for compact operators between Banach lattices) to different classes of compact operators between locally solid vector lattices.
@article{VMJ_2023_25_3_a5,
     author = {O. Zabeti},
     title = {A {Krengel} type theorem for compact operators between locally solid vector lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {76--80},
     year = {2023},
     volume = {25},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a5/}
}
TY  - JOUR
AU  - O. Zabeti
TI  - A Krengel type theorem for compact operators between locally solid vector lattices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2023
SP  - 76
EP  - 80
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a5/
LA  - en
ID  - VMJ_2023_25_3_a5
ER  - 
%0 Journal Article
%A O. Zabeti
%T A Krengel type theorem for compact operators between locally solid vector lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2023
%P 76-80
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a5/
%G en
%F VMJ_2023_25_3_a5
O. Zabeti. A Krengel type theorem for compact operators between locally solid vector lattices. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 3, pp. 76-80. http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a5/

[1] Aliprantis, C. D. and Burkinshaw, O., Positive Operators, Springer, 2006 | Zbl

[2] Zabeti, O., “$AM$-Spaces from a Locally Solid Vector Lattice Point of View with Applications”, Bulletin of the Iranian Mathematical Society, 47 (2021), 1559–1569 | DOI | MR | Zbl

[3] Aliprantis, C. D. and Burkinshaw, O., Locally Solid Riesz Spaces with Applications to Economics, Mathematical Surveys and Monographs, 105, American Mathematical Society, Providence, 2003 | DOI | MR | Zbl

[4] Jameson, G. J. O., “Topological $M$-Spaces”, Mathematische Zeitschrift, 103 (1968), 139–150 | DOI | MR | Zbl

[5] Zabeti, O., “The Banach-Saks Property from a Locally Solid Vector Lattice Point of View”, Positivity, 25 (2021), 1579–1583 | DOI | MR | Zbl

[6] Jameson, G. J. O., Ordered Linear Spaces, Lecture Notes in Mathematics, 141, Springer, 1970 | DOI | MR | Zbl

[7] Erkursun-Ozcan, N., Anil Gezer, N. and Zabeti, O., “Spaces of $u\tau$-Dunford-Pettis and $u\tau$-Compact Operators on Locally Solid Vector Lattices”, Matematicki Vesnik, 71:4 (2019), 351–358 | MR | Zbl

[8] Troitsky, V. G., “Spectral Radii of Bounded Operators on Topological Vector Spaces”, PanAmerican Mathematical Journal, 11:3 (2001), 1–35 | MR | Zbl