@article{VMJ_2023_25_3_a5,
author = {O. Zabeti},
title = {A {Krengel} type theorem for compact operators between locally solid vector lattices},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {76--80},
year = {2023},
volume = {25},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a5/}
}
O. Zabeti. A Krengel type theorem for compact operators between locally solid vector lattices. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 3, pp. 76-80. http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a5/
[1] Aliprantis, C. D. and Burkinshaw, O., Positive Operators, Springer, 2006 | Zbl
[2] Zabeti, O., “$AM$-Spaces from a Locally Solid Vector Lattice Point of View with Applications”, Bulletin of the Iranian Mathematical Society, 47 (2021), 1559–1569 | DOI | MR | Zbl
[3] Aliprantis, C. D. and Burkinshaw, O., Locally Solid Riesz Spaces with Applications to Economics, Mathematical Surveys and Monographs, 105, American Mathematical Society, Providence, 2003 | DOI | MR | Zbl
[4] Jameson, G. J. O., “Topological $M$-Spaces”, Mathematische Zeitschrift, 103 (1968), 139–150 | DOI | MR | Zbl
[5] Zabeti, O., “The Banach-Saks Property from a Locally Solid Vector Lattice Point of View”, Positivity, 25 (2021), 1579–1583 | DOI | MR | Zbl
[6] Jameson, G. J. O., Ordered Linear Spaces, Lecture Notes in Mathematics, 141, Springer, 1970 | DOI | MR | Zbl
[7] Erkursun-Ozcan, N., Anil Gezer, N. and Zabeti, O., “Spaces of $u\tau$-Dunford-Pettis and $u\tau$-Compact Operators on Locally Solid Vector Lattices”, Matematicki Vesnik, 71:4 (2019), 351–358 | MR | Zbl
[8] Troitsky, V. G., “Spectral Radii of Bounded Operators on Topological Vector Spaces”, PanAmerican Mathematical Journal, 11:3 (2001), 1–35 | MR | Zbl