@article{VMJ_2023_25_3_a4,
author = {N. P. Volchkova and Vit. V. Volchkov},
title = {Inversion of a convolution operator associated with spherical means},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {59--75},
year = {2023},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a4/}
}
N. P. Volchkova; Vit. V. Volchkov. Inversion of a convolution operator associated with spherical means. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 3, pp. 59-75. http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a4/
[1] Minkowski, H., “Über die Körper konstanter Breite”, Gesammelte Abhandlungen, 2 (1911), 277–279 (in German) | MR
[2] Funk, P., “Über Flächen mit Lauter Geschlossenen Geodätishen Linien”, Mathematische Annalen, 74 (1913), 278–300 | DOI | MR
[3] Radon, J., “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten”, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Nat. Kl., 69 (1917), 262–277
[4] Berenstein, C. A. and Struppa, D. C., “Complex Analysis and Convolution Equations”, Several Complex Variables, V, Encyclopedia of Mathematical Sciences, 54, Springer-Verlag, New York, 1993, 1–108 | DOI
[5] Zalcman, L., “A Bibliographic Survey of the Pompeiu Problem”, Approximation by Solutions of Partial Differential Equations, Kluwer Academic Publishers, Dordrecht, 1992, 185–194 | DOI | MR
[6] Zalcman, L., “Supplementary Bibliography to “A Bibliographic Survey of the Pompeiu Problem””, Radon Transform and Tomography, Contemporary Mathematics, 278, 2001, 69–74 | DOI | MR | Zbl
[7] Volchkov, V. V., Integral Geometry and Convolution Equations, Kluwer Academic Publishers, Dordrecht, 2003, 454 pp. | DOI | MR | Zbl
[8] Volchkov, V. V. and Volchkov, Vit. V., Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer, London, 2009, 672 pp. | DOI | MR | Zbl
[9] Volchkov, V. V. and Volchkov, Vit. V., Offbeat Integral Geometry on Symmetric Spaces, Birkhäuser, Basel, 2013, 592 pp. | DOI | MR | Zbl
[10] Brown, L., Schreiber, B. M. and Taylor, B. A., “Spectral Synthesis and the Pompeiu Problem”, Annales de l'Institut Fourier, Grenoble, 23:3 (1973), 125–154 | DOI | MR | Zbl
[11] Ikromov, I. A., “Recovering a Function from its Spherical Means”, Russian Mathematical Surveys, 42:5 (1987), 169–170 | DOI | MR | Zbl
[12] Berenstein, C. A., Gay, R. and Yger, A., “Inversion of the Local Pompeiu Transform”, Journal d'Analyse Mathématique, 54:1 (1990), 259–287 | DOI | MR | Zbl
[13] Helgason, S., Integral Geometry and Radon Transforms, Springer, New York, 2010, 301 pp. | DOI | MR
[14] Volchkova, N. P. and Volchkov, Vit. V., “Deconvolution Problem for Indicators of Segments”, Mathematical Notes of NEFU, 26:3 (2019), 3–14 (in Russian) | DOI | MR
[15] Hörmander, L., The Analysis of Linear Partial Differential Operators, v. I, Springer-Verlag, New York, 2003, 440 pp. | DOI | MR | Zbl
[16] Helgason, S., Groups and Geometric Analysis, Academic Press, New York, 1984, 667 pp. http://books.google.com/books?vid=ISBN978-1-4704-1310-1 | MR | Zbl
[17] Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G., Higher Transcendental Functions (Bateman Manuscript Project), v. II, McGraw-Hill, New York, 1953, 302 pp. https://resolver.caltech.edu/CaltechAUTHORS:20140123-104529738
[18] El Harchaoui, M., “Inversion de la Transformation de Pompéiu Locale Dans les Espaces Hyperboliques RÉel et Complexe (Cas de deux boules)”, Journal d'Analyse Mathématique, 67:1 (1995), 1–37 | DOI | MR | Zbl
[19] Berkani, M., El Harchaoui, M. and Gay, R., “Inversion de la Transformation de Pompéiu locale Dans l{'}espace Hyperbolique Quaternique — Cas des deux boules”, Complex Variables, 43:1 (2000), 29–57 | DOI | MR | Zbl
[20] Volchkov, Vit. V. and Volchkova, N. P., “Inversion of the Local Pompeiu Transform on the Quaternion Hyperbolic Space”, Doklady Mathematics, 64:1 (2001), 90–93 | MR | Zbl | Zbl
[21] Volchkov, Vit. V. and Volchkova, N. P., “Inversion Theorems for the Local Pompeiu Transformation in the Quaternion Hyperbolic Space”, St. Petersburg Mathematical Journal, 15:5 (2004), 753–771 | DOI | MR | Zbl
[22] Volchkov, Vit. V., “On Functions with Given Spherical Means on Symmetric Spaces”, Journal of Mathematical Sciences, 175:4 (2011), 402–412 | DOI | MR | Zbl
[23] Volchkov, V. V. and Volchkov, Vit. V., “Inversion of the Local Pompeiu Transformation on Riemannian Symmetric Spaces of Rank One”, Journal of Mathematical Sciences, 179:2 (2011), 328–343 | DOI | MR | Zbl
[24] Volchkov, V. V. and Volchkov, Vit. V., “Spherical Means on Two-Point Homogeneous Spaces and Applications”, Izvestiya: Mathematics, 77:2 (2013), 223–252 | DOI | DOI | MR | Zbl
[25] Rubin, B., “Reconstruction of Functions on the Sphere from Their Integrals Over Hyperplane Sections”, Analysis and Mathematical Physics, 9:4 (2019), 1627–1664 | DOI | MR | Zbl
[26] Salman, Y., “Recovering Functions Defined on the Unit Sphere by Integration on a Special Family of Sub-Spheres”, Analysis and Mathematical Physics, 7:2 (2017), 165–185 | DOI | MR | Zbl
[27] Hielscher, R. and Quellmalz, M., “Reconstructing an Function on the Sphere from its Means Along Vertical Slices”, Inverse Problems and Imaging, 10:3 (2016), 711–739 | DOI | MR | Zbl
[28] Vladimirov, V. S. and Zharinov, V. V., Equations of Mathematical Pphysics, Fizmatlit, M., 2008, 400 pp. (in Russian)
[29] Levin, B. Ya., Distribution of Roots of Entire Functions, URSS, M., 2022, 632 pp. (in Russian)
[30] Ilyin, V. A., Sadovnichiy, V. A. and Sendov, Bl. Kh., Mathematical Analysis, v. II, Yurayt-Izdat, M., 2013, 357 pp. (in Russian) | MR