Inversion of a convolution operator associated with spherical means
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 3, pp. 59-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An obvious property of an arbitrary nonzero smooth antiperiodic function is that its derivative has no corresponding period. In other words, if $r$ is a fixed positive number, $f(x+r)+f(x-r)=0$ and $f'(x+r)-f'(x-r)=0$ on the real axis, then $f=0$. This fact admits non-trivial generalizations to multidimensional spaces. One general method for such generalizations is the following Brown-Schreiber-Taylor theorem on spectral analysis: any non-zero subspace $\mathcal{U}$ in $C(\mathbb{R}^n)$ invariant under all motions of $\mathbb{R}^n$ contains for some $\lambda\in \mathbb{C}$, the radial function $(\lambda|x|)^{1-\frac{n}{2}}J_{\frac{n}{2}-1}(\lambda|x|)$, where $J_{\nu}$ is the Bessel function of the first kind of order $\nu$. In particular, if a function $f\in C^1(\mathbb{R}^n)$ and its normal derivative have zero integrals over all spheres of fixed radius $r$ in $\mathbb{R}^n$, then $f=0$. In terms of convolution, this means that the operator $\mathcal{P}f =(f\ast \Delta \chi_r, f\ast \sigma_r)$, $f\in C(\mathbb{R}^n)$, is injective, where $\Delta$ is the Laplace operator, $\chi_{r}$ is the indicator of the ball $B_r=\{x\in\mathbb{R}^n: |x|, $\sigma_{r}$ is the surface delta function centered on the sphere $S_r= \{x\in\mathbb{R}^n: |x|=r\}$. In this paper, we study the inversion problem for the operator $\mathcal{P}$ on the class of distributions. A new formula for reconstruction a distribution $f\in \mathcal{D}'(\mathbb{R}^n)$ from known convolutions $f\ast \Delta \chi_r$ and $f\ast \sigma_r$ is obtained. The paper uses the methods of harmonic analysis, as well as the theory of entire and special functions. The key step in the proof of the main result is the expansion of the Dirac delta function in terms of a system of radial distributions supported in $\overline{B}_r$, biorthogonal to some system of spherical functions. A similar approach can be used to invert other convolution operators with radial distributions in $\mathcal{E}'(\mathbb{R}^n)$.
@article{VMJ_2023_25_3_a4,
     author = {N. P. Volchkova and Vit. V. Volchkov},
     title = {Inversion of a convolution operator associated with spherical means},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {59--75},
     year = {2023},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a4/}
}
TY  - JOUR
AU  - N. P. Volchkova
AU  - Vit. V. Volchkov
TI  - Inversion of a convolution operator associated with spherical means
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2023
SP  - 59
EP  - 75
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a4/
LA  - ru
ID  - VMJ_2023_25_3_a4
ER  - 
%0 Journal Article
%A N. P. Volchkova
%A Vit. V. Volchkov
%T Inversion of a convolution operator associated with spherical means
%J Vladikavkazskij matematičeskij žurnal
%D 2023
%P 59-75
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a4/
%G ru
%F VMJ_2023_25_3_a4
N. P. Volchkova; Vit. V. Volchkov. Inversion of a convolution operator associated with spherical means. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 3, pp. 59-75. http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a4/

[1] Minkowski, H., “Über die Körper konstanter Breite”, Gesammelte Abhandlungen, 2 (1911), 277–279 (in German) | MR

[2] Funk, P., “Über Flächen mit Lauter Geschlossenen Geodätishen Linien”, Mathematische Annalen, 74 (1913), 278–300 | DOI | MR

[3] Radon, J., “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten”, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Nat. Kl., 69 (1917), 262–277

[4] Berenstein, C. A. and Struppa, D. C., “Complex Analysis and Convolution Equations”, Several Complex Variables, V, Encyclopedia of Mathematical Sciences, 54, Springer-Verlag, New York, 1993, 1–108 | DOI

[5] Zalcman, L., “A Bibliographic Survey of the Pompeiu Problem”, Approximation by Solutions of Partial Differential Equations, Kluwer Academic Publishers, Dordrecht, 1992, 185–194 | DOI | MR

[6] Zalcman, L., “Supplementary Bibliography to “A Bibliographic Survey of the Pompeiu Problem””, Radon Transform and Tomography, Contemporary Mathematics, 278, 2001, 69–74 | DOI | MR | Zbl

[7] Volchkov, V. V., Integral Geometry and Convolution Equations, Kluwer Academic Publishers, Dordrecht, 2003, 454 pp. | DOI | MR | Zbl

[8] Volchkov, V. V. and Volchkov, Vit. V., Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer, London, 2009, 672 pp. | DOI | MR | Zbl

[9] Volchkov, V. V. and Volchkov, Vit. V., Offbeat Integral Geometry on Symmetric Spaces, Birkhäuser, Basel, 2013, 592 pp. | DOI | MR | Zbl

[10] Brown, L., Schreiber, B. M. and Taylor, B. A., “Spectral Synthesis and the Pompeiu Problem”, Annales de l'Institut Fourier, Grenoble, 23:3 (1973), 125–154 | DOI | MR | Zbl

[11] Ikromov, I. A., “Recovering a Function from its Spherical Means”, Russian Mathematical Surveys, 42:5 (1987), 169–170 | DOI | MR | Zbl

[12] Berenstein, C. A., Gay, R. and Yger, A., “Inversion of the Local Pompeiu Transform”, Journal d'Analyse Mathématique, 54:1 (1990), 259–287 | DOI | MR | Zbl

[13] Helgason, S., Integral Geometry and Radon Transforms, Springer, New York, 2010, 301 pp. | DOI | MR

[14] Volchkova, N. P. and Volchkov, Vit. V., “Deconvolution Problem for Indicators of Segments”, Mathematical Notes of NEFU, 26:3 (2019), 3–14 (in Russian) | DOI | MR

[15] Hörmander, L., The Analysis of Linear Partial Differential Operators, v. I, Springer-Verlag, New York, 2003, 440 pp. | DOI | MR | Zbl

[16] Helgason, S., Groups and Geometric Analysis, Academic Press, New York, 1984, 667 pp. http://books.google.com/books?vid=ISBN978-1-4704-1310-1 | MR | Zbl

[17] Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G., Higher Transcendental Functions (Bateman Manuscript Project), v. II, McGraw-Hill, New York, 1953, 302 pp. https://resolver.caltech.edu/CaltechAUTHORS:20140123-104529738

[18] El Harchaoui, M., “Inversion de la Transformation de Pompéiu Locale Dans les Espaces Hyperboliques RÉel et Complexe (Cas de deux boules)”, Journal d'Analyse Mathématique, 67:1 (1995), 1–37 | DOI | MR | Zbl

[19] Berkani, M., El Harchaoui, M. and Gay, R., “Inversion de la Transformation de Pompéiu locale Dans l{'}espace Hyperbolique Quaternique — Cas des deux boules”, Complex Variables, 43:1 (2000), 29–57 | DOI | MR | Zbl

[20] Volchkov, Vit. V. and Volchkova, N. P., “Inversion of the Local Pompeiu Transform on the Quaternion Hyperbolic Space”, Doklady Mathematics, 64:1 (2001), 90–93 | MR | Zbl | Zbl

[21] Volchkov, Vit. V. and Volchkova, N. P., “Inversion Theorems for the Local Pompeiu Transformation in the Quaternion Hyperbolic Space”, St. Petersburg Mathematical Journal, 15:5 (2004), 753–771 | DOI | MR | Zbl

[22] Volchkov, Vit. V., “On Functions with Given Spherical Means on Symmetric Spaces”, Journal of Mathematical Sciences, 175:4 (2011), 402–412 | DOI | MR | Zbl

[23] Volchkov, V. V. and Volchkov, Vit. V., “Inversion of the Local Pompeiu Transformation on Riemannian Symmetric Spaces of Rank One”, Journal of Mathematical Sciences, 179:2 (2011), 328–343 | DOI | MR | Zbl

[24] Volchkov, V. V. and Volchkov, Vit. V., “Spherical Means on Two-Point Homogeneous Spaces and Applications”, Izvestiya: Mathematics, 77:2 (2013), 223–252 | DOI | DOI | MR | Zbl

[25] Rubin, B., “Reconstruction of Functions on the Sphere from Their Integrals Over Hyperplane Sections”, Analysis and Mathematical Physics, 9:4 (2019), 1627–1664 | DOI | MR | Zbl

[26] Salman, Y., “Recovering Functions Defined on the Unit Sphere by Integration on a Special Family of Sub-Spheres”, Analysis and Mathematical Physics, 7:2 (2017), 165–185 | DOI | MR | Zbl

[27] Hielscher, R. and Quellmalz, M., “Reconstructing an Function on the Sphere from its Means Along Vertical Slices”, Inverse Problems and Imaging, 10:3 (2016), 711–739 | DOI | MR | Zbl

[28] Vladimirov, V. S. and Zharinov, V. V., Equations of Mathematical Pphysics, Fizmatlit, M., 2008, 400 pp. (in Russian)

[29] Levin, B. Ya., Distribution of Roots of Entire Functions, URSS, M., 2022, 632 pp. (in Russian)

[30] Ilyin, V. A., Sadovnichiy, V. A. and Sendov, Bl. Kh., Mathematical Analysis, v. II, Yurayt-Izdat, M., 2013, 357 pp. (in Russian) | MR