@article{VMJ_2023_25_3_a2,
author = {A. Bouakaz and F. Bouhmila and S. G. Georgiev and A. Kheloufi and S. Khoufache},
title = {Existence of classical solutions for a class of the {Khokhlov{\textendash}Zabolotskaya{\textendash}Kuznetsov} type equations},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {36--50},
year = {2023},
volume = {25},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a2/}
}
TY - JOUR AU - A. Bouakaz AU - F. Bouhmila AU - S. G. Georgiev AU - A. Kheloufi AU - S. Khoufache TI - Existence of classical solutions for a class of the Khokhlov–Zabolotskaya–Kuznetsov type equations JO - Vladikavkazskij matematičeskij žurnal PY - 2023 SP - 36 EP - 50 VL - 25 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a2/ LA - en ID - VMJ_2023_25_3_a2 ER -
%0 Journal Article %A A. Bouakaz %A F. Bouhmila %A S. G. Georgiev %A A. Kheloufi %A S. Khoufache %T Existence of classical solutions for a class of the Khokhlov–Zabolotskaya–Kuznetsov type equations %J Vladikavkazskij matematičeskij žurnal %D 2023 %P 36-50 %V 25 %N 3 %U http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a2/ %G en %F VMJ_2023_25_3_a2
A. Bouakaz; F. Bouhmila; S. G. Georgiev; A. Kheloufi; S. Khoufache. Existence of classical solutions for a class of the Khokhlov–Zabolotskaya–Kuznetsov type equations. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 3, pp. 36-50. http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a2/
[1] Kuznetsov, V. P., “Equations of Nonlinear Acoustics”, Soviet Physics Acoustics, 16 (1971), 467–470
[2] Zabolotskaya, E. A. and Khokhlov, R. V., “Quasi-Plane Waves in the Nonlinear Acoustics of Confined Beams”, Soviet Physics Acoustics, 15 (1969), 35–40
[3] Chou, C.-S., Sun, W., Xing, Y. and Yang, H., “Local Discontinuous Galerkin Methods for the Khokhlov–Zabolotskaya–Kuznetzov Equation”, Journal of Scientific Computing, 73:2–3 (2017), 593–616 | DOI | MR | Zbl
[4] Rozanova-Pierrat, A., Mathematical Analysis of Khokhlov–Zabolotskaya–Kuznetsov (KZK) Equation, , 2006, 68 pp. hal-00112147 | MR
[5] Averkiou, M. A. and Cleveland, R. O., “Modeling of an Electrohydraulic Lithotripter with the KZK Equation”, The Journal of the Acoustical Society of America, 106:1 (1999), 102–112 | DOI
[6] Destrade, M., Goriely, A. and Saccomandi, G., “Scalar Evolution Equations for Shear Waves in Incompressible Solids: a Simple Derivation of the Z, ZK, KZK and KP Equations”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467:2131 (2011), 1823–1834 | DOI | MR | Zbl
[7] Kostin, I. and Panasenko, G., “Khokhlov–Zabolotskaya–Kuznetsov Type Equation: Nonlinear Acoustics in Heterogeneous Media”, SIAM Journal on Mathematical Analysis, 40:2 (2008), 699–715 | DOI | MR | Zbl
[8] Zhang, L., Ji, J., Jiang, J. and Zhang, C., “The New Exact Analytical Solutions and Numerical Simulation of $(3 + 1)$-Dimensional Time Fractional KZK Equation”, International Journal of Computing Science and Mathematics, 10:2 (2019), 174–192 | DOI | MR | Zbl
[9] Akçaǧil, S. and Aydemir, T., “New Exact Solutions for the Khokhlov–Zabolotskaya–Kuznetsov, the Newell–Whitehead–Segel and the Rabinovich Wave Equations by Using a New Modification of the Tanh-Coth Method”, Cogent Mathematics, 3 (2016), 1193104, 12 pp. | DOI | MR | Zbl
[10] Satapathy, P., Raja Sekhar, T. and Zeidan, D., “Codimension Two Lie Invariant Solutions of the Modified Khokhlov–Zabolotskaya–Kuznetsov Equation”, Mathematical Methods in the Applied Sciences, 44:6 (2021), 4938–4951 | DOI | MR | Zbl
[11] Dontsov, E. V. and Guzina, B. B., “On the KZK-Type Equation for Modulated Ultrasound Fields”, Wave Motion, 50:4 (2013), 763–775 | DOI | MR | Zbl
[12] Georgiev, S. G. and Zennir, K., “Existence of Solutions for a Class of Nonlinear Impulsive Wave Equations”, Ricerche di Matematica, 71:1 (2022), 211–225 | DOI | MR
[13] Djebali, S. and Mebarki, K., “Fixed Point Index Theory for Perturbation of Expansive Mappings by $k$-Set Contractions”, Topological Methods in Nonlinear Analysis, 54:2A (2019), 613–640 | DOI | MR | Zbl
[14] Polyanin, A. and Manzhirov, A., Handbook of Integral Equations, CRC Press, 1998, 796 pp. | MR | Zbl