Integration of the modified Korteweg--de Vries equation with time-dependent coefficients and with a self-consistent source
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 3, pp. 123-142

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the Cauchy problem for the modified Korteweg–de Vries equation with time-dependent coefficients and a self-consistent source in the class of rapidly decreasing functions. To solve the stated problem, the inverse scattering method is used. Lax pairs are found, which will make it possible to apply the inverse scattering method to solve the stated Cauchy problem. Note that in the case under consideration the Dirac operator is not self-adjoint, so the eigenvalues can be multiple. Equations are found for the dynamics of change in time of the scattering data of a non-self-adjoint operator of the Dirac operator with a potential that is a solution of the modified Korteweg–de Vries equation with variable time-dependent coefficients and with a self-consistent source in the class of rapidly decreasing functions. A special case of a modified Korteweg–de Vries equation with time-dependent variable coefficients and a self-consistent source, namely, a loaded modified Korteweg–de Vries equation with a self-consistent source, is considered. Equations are found for the dynamics of change in time of the scattering data of a non-self-adjoint operator of the Dirac operator with a potential that is a solution of the loaded modified Korteweg–de Vries equation with variable coefficients in the class of rapidly decreasing functions. Examples are given to illustrate the application of the obtained results.
@article{VMJ_2023_25_3_a10,
     author = {Sh. K. Sobirov and U.A. Hoitmetov},
     title = {Integration of the modified {Korteweg--de} {Vries} equation with time-dependent coefficients and with a self-consistent source},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {123--142},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a10/}
}
TY  - JOUR
AU  - Sh. K. Sobirov
AU  - U.A. Hoitmetov
TI  - Integration of the modified Korteweg--de Vries equation with time-dependent coefficients and with a self-consistent source
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2023
SP  - 123
EP  - 142
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a10/
LA  - ru
ID  - VMJ_2023_25_3_a10
ER  - 
%0 Journal Article
%A Sh. K. Sobirov
%A U.A. Hoitmetov
%T Integration of the modified Korteweg--de Vries equation with time-dependent coefficients and with a self-consistent source
%J Vladikavkazskij matematičeskij žurnal
%D 2023
%P 123-142
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a10/
%G ru
%F VMJ_2023_25_3_a10
Sh. K. Sobirov; U.A. Hoitmetov. Integration of the modified Korteweg--de Vries equation with time-dependent coefficients and with a self-consistent source. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 3, pp. 123-142. http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a10/