@article{VMJ_2023_25_3_a1,
author = {M. Kh. Beshtokov},
title = {Numerical methods for solving nonlocal boundary value problems for generalized loaded {Hallaire} equations},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {15--35},
year = {2023},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a1/}
}
TY - JOUR AU - M. Kh. Beshtokov TI - Numerical methods for solving nonlocal boundary value problems for generalized loaded Hallaire equations JO - Vladikavkazskij matematičeskij žurnal PY - 2023 SP - 15 EP - 35 VL - 25 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a1/ LA - ru ID - VMJ_2023_25_3_a1 ER -
M. Kh. Beshtokov. Numerical methods for solving nonlocal boundary value problems for generalized loaded Hallaire equations. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 3, pp. 15-35. http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a1/
[1] Nakhushev, A. M., Fractional Calculus and Its Application, Fizmatlit, M., 2003, 272 pp. (in Russian)
[2] Uchaykin, V. V., Method of Fractional Derivatives, Artishok, Ul'yanovsk, 2008, 512 pp. (in Russian)
[3] Samko, S. G., Kilbas, A. A. and Marichev, O. I., Fractional Integrals and Derivatives and Some of Their Applications], Minsk, Nauka i Tekhnika, 1987, 688 pp. (in Russian)
[4] Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999, 368 pp. | MR | Zbl
[5] Barenblatt, G. I., Entov, V. M. and Ryzhik, V. M., Movement of Liquids and Gases in Natural Reservoirs, Nedra, M., 1984, 447 pp. (in Russian)
[6] Shkhanukov, M. Kh., “Some Boundary Value Problems for a Third-Order Equation That Arise in the Modeling of the Filtration if a Fluid in Porous Media”, Differential Equations, 18:4 (1982), 689–700 (in Russian) | MR
[7] Cuesta C., van Duijn C. J., Hulshof J., “Infiltration in porous media with dynamic capillary pressure: travelling waves”, Eur. J. Appl. Math., 11:4 (2000), 381–397 | DOI | MR | Zbl
[8] Chudnovskiy, A. F., Thermal Physics of Soils, Nauka, M., 1976, 353 pp. (in Russian)
[9] Hallaire M., “Le potentiel efficace de l'eau dans le sol en regime de dessechement”, L'Eau et la Production Vegetale, 9, Institut National de la Recherche Agronomique, Paris, 1964, 27–62
[10] Colton D. L., “On the analytic theory of pseudoparabolic equations”, Quart. J. Math., 23 (1972), 179–192 | DOI | MR | Zbl
[11] Dzektser, E. S., “Equations of Motion of Groundwater with a Free Surface in Multilayer Media”, Doklady Akademii Nauk SSSR, 220:3 (1975), 540–543 (in Russian) | Zbl
[12] Chen P. J., Gurtin M. E., “On a theory of heat conduction involving two temperatures”, J. Appl. Math. Phys. (ZAMP), 19:4 (1968), 614–627 | DOI | Zbl
[13] Ting T. W., “Certain non-steady flows of second-order fluids”, Arch. Ration. Mech. Anal., 14 (1963), 1–26 | DOI | MR | Zbl
[14] Sveshnikov, A. G., Alshin, A. B., Korpusov, M. O. and Pletner, Yu. D., Linear and Nonlinear Equations of the Sobolev Type, Fizmatlit, M., 2007, 736 pp. (in Russian)
[15] Bedanokova, S. Yu., “The Equation of Soil Moisture Movement and the Mathematical Model of Moisture Content of the Soil Layer, Based on the Hallaire's Equation”, Vestnik Adygeyskogo Gosudarstvennogo Universiteta. Seriya 4: Yestestvenno-Matematicheskiye i Tekhnicheskiye Nauki, 4 (2007), 68–71 (in Russian)
[16] Goloviznin, V. M., Kiselev, V. P. and Korotkiy, I. A., Computational Methods for One-Dimensional Fractional Diffusion Equations, Nuclear Safety Institute of the Russian Academy of Sciences, M., 2003, 35 pp. (in Russian)
[17] Lafisheva, M. M., Shhanukov-Lafishev, M. H., “Locally One-Dimensional Difference Schemes for the Fractional Order Diffusion Equation”, Comput. Math. Math. Phys., 48:10 (2008), 1875–1884 | DOI | MR | Zbl
[18] Diethelm, K. and Walz, G., “Numerical Solution of Fractional Order Differential Equations by Extrapolation”, Numerical Algorithms, 16 (1997), 231–253 | DOI | MR | MR | Zbl | Zbl
[19] Diethelm K., Walz G., “Numerical solution of fractional order differential equations by extrapolation”, Numerical Algorithms, 16 (1997), 231–253 | DOI | MR | Zbl
[20] Alikhanov A. A., “Apriornye otsenki reshenii kraevykh zadach dlya uravnenii drobnogo poryadka”, Differents. uravneniya, 46:5 (2010), 658–664 | MR | Zbl
[21] Alikhanov A. A., “A new difference scheme for the time fractional diffusion equation”, J. Comput. Phys., 280 (2015), 424–438 | DOI | MR | Zbl
[22] Nerpin, S. V. and Chudnovskiy, A. F., Energy and Mass Transfer in the Plant–Soil–Air System, Gidrometeoizdat, L., 1975, 358 pp. (in Russian)
[23] Nigmatulin, R. R., “Relaxation Features of a System with Residual Memory”, Physics of the Solid State, 27:5 (1985), 1583–1585 (in Russian)
[24] Beshtokov, M. Kh., “Boundary Value Problems for Degenerating and Non-Degenerating Sobolev-Type Equations with a Nonlocal Source in Differential and Difference Forms”, Differential Equations, 54:2 (2018), 250–267 | DOI | DOI | MR | Zbl
[25] Beshtokov M. Kh., “The third boundary value problem for loaded differential Sobolev type equation and grid methods of their numerical implementation”, IOP Conf. Ser.: Mater. Sci. Eng., 158:1 (2016), 1–6 | DOI | MR
[26] Beshtokov, M. Kh., “To Boundary Value Problems for Degenerating Pseudoparabolic Equations with Gerasimov–Caputo Fractional Derivative”, Russian Mathematics, 62 (2018), 1–14 | DOI | MR | Zbl
[27] Beshtokov, M. Kh., “Boundary Value Problems for the Generalized Modified Moisture Transfer Equation and Difference Methods for Their Numerical Realization”, Applied Mathematics and Physics, 52:2 (2020), 128–138 (in Russian) | DOI | MR
[28] Beshtokov, M. Kh., “Boundary Value Problems for a Loaded Modified Time-Fractional Moisture Transfer Equation with a Bessel Operator and Difference Methods for Their Solution”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternyye Nauki, 30:2 (2020), 158–175 (in Russian) | MR | Zbl
[29] Samarskii, A. A., Theory of Difference Schemes, Nauka, M., 1983, 616 pp. (in Russian)
[30] Voyevodin, A. F. and Shugrin, S. M., Numerical Methods for Calculating One-Dimensional Systems, Nauka, Siberian Branch, Novosibirsk, 1981, 208 pp. (in Russian) | MR