Numerical methods for solving nonlocal boundary value problems for generalized loaded Hallaire equations
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 3, pp. 15-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is devoted to nonlocal boundary value problems for one-dimensional space-loaded Hallaire equations with variable coefficients and two Caputo fractional differentiation operators with orders $\alpha$ and $\beta$. Similar problems arise in the practice of regulating the salt regime of soils, when the stratification of the upper layer is achieved by draining the water layer from the surface of a site flooded for some time. Difference schemes are constructed for the numerical solution of the problems posed on a uniform grid. Using the method of energy inequalities for various relations between the orders of the fractional Caputo derivative $\alpha$ and $\beta$, we obtain a priori estimates in differential and difference interpretations for solutions of nonlocal boundary value problems. The obtained a priori estimates imply uniqueness and stability of the solution with respect to the right-hand side and the initial data, as well as the convergence of the solution of the difference problem to the solution of the corresponding original differential problem (assuming the existence of a solution to the differential problem in the class of sufficiently smooth functions) at a rate of $O(h^2+ \tau^2)$ for $\alpha=\beta$ and $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ for $\alpha\neq\beta $. The paper also presents an algorithm for the numerical solution of a nonlocal boundary value problem for a loaded Hallaire equation with variable coefficients and a Bessel operator.
@article{VMJ_2023_25_3_a1,
     author = {M. Kh. Beshtokov},
     title = {Numerical methods for solving nonlocal boundary value problems for generalized loaded {Hallaire} equations},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {15--35},
     year = {2023},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a1/}
}
TY  - JOUR
AU  - M. Kh. Beshtokov
TI  - Numerical methods for solving nonlocal boundary value problems for generalized loaded Hallaire equations
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2023
SP  - 15
EP  - 35
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a1/
LA  - ru
ID  - VMJ_2023_25_3_a1
ER  - 
%0 Journal Article
%A M. Kh. Beshtokov
%T Numerical methods for solving nonlocal boundary value problems for generalized loaded Hallaire equations
%J Vladikavkazskij matematičeskij žurnal
%D 2023
%P 15-35
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a1/
%G ru
%F VMJ_2023_25_3_a1
M. Kh. Beshtokov. Numerical methods for solving nonlocal boundary value problems for generalized loaded Hallaire equations. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 3, pp. 15-35. http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a1/

[1] Nakhushev, A. M., Fractional Calculus and Its Application, Fizmatlit, M., 2003, 272 pp. (in Russian)

[2] Uchaykin, V. V., Method of Fractional Derivatives, Artishok, Ul'yanovsk, 2008, 512 pp. (in Russian)

[3] Samko, S. G., Kilbas, A. A. and Marichev, O. I., Fractional Integrals and Derivatives and Some of Their Applications], Minsk, Nauka i Tekhnika, 1987, 688 pp. (in Russian)

[4] Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999, 368 pp. | MR | Zbl

[5] Barenblatt, G. I., Entov, V. M. and Ryzhik, V. M., Movement of Liquids and Gases in Natural Reservoirs, Nedra, M., 1984, 447 pp. (in Russian)

[6] Shkhanukov, M. Kh., “Some Boundary Value Problems for a Third-Order Equation That Arise in the Modeling of the Filtration if a Fluid in Porous Media”, Differential Equations, 18:4 (1982), 689–700 (in Russian) | MR

[7] Cuesta C., van Duijn C. J., Hulshof J., “Infiltration in porous media with dynamic capillary pressure: travelling waves”, Eur. J. Appl. Math., 11:4 (2000), 381–397 | DOI | MR | Zbl

[8] Chudnovskiy, A. F., Thermal Physics of Soils, Nauka, M., 1976, 353 pp. (in Russian)

[9] Hallaire M., “Le potentiel efficace de l'eau dans le sol en regime de dessechement”, L'Eau et la Production Vegetale, 9, Institut National de la Recherche Agronomique, Paris, 1964, 27–62

[10] Colton D. L., “On the analytic theory of pseudoparabolic equations”, Quart. J. Math., 23 (1972), 179–192 | DOI | MR | Zbl

[11] Dzektser, E. S., “Equations of Motion of Groundwater with a Free Surface in Multilayer Media”, Doklady Akademii Nauk SSSR, 220:3 (1975), 540–543 (in Russian) | Zbl

[12] Chen P. J., Gurtin M. E., “On a theory of heat conduction involving two temperatures”, J. Appl. Math. Phys. (ZAMP), 19:4 (1968), 614–627 | DOI | Zbl

[13] Ting T. W., “Certain non-steady flows of second-order fluids”, Arch. Ration. Mech. Anal., 14 (1963), 1–26 | DOI | MR | Zbl

[14] Sveshnikov, A. G., Alshin, A. B., Korpusov, M. O. and Pletner, Yu. D., Linear and Nonlinear Equations of the Sobolev Type, Fizmatlit, M., 2007, 736 pp. (in Russian)

[15] Bedanokova, S. Yu., “The Equation of Soil Moisture Movement and the Mathematical Model of Moisture Content of the Soil Layer, Based on the Hallaire's Equation”, Vestnik Adygeyskogo Gosudarstvennogo Universiteta. Seriya 4: Yestestvenno-Matematicheskiye i Tekhnicheskiye Nauki, 4 (2007), 68–71 (in Russian)

[16] Goloviznin, V. M., Kiselev, V. P. and Korotkiy, I. A., Computational Methods for One-Dimensional Fractional Diffusion Equations, Nuclear Safety Institute of the Russian Academy of Sciences, M., 2003, 35 pp. (in Russian)

[17] Lafisheva, M. M., Shhanukov-Lafishev, M. H., “Locally One-Dimensional Difference Schemes for the Fractional Order Diffusion Equation”, Comput. Math. Math. Phys., 48:10 (2008), 1875–1884 | DOI | MR | Zbl

[18] Diethelm, K. and Walz, G., “Numerical Solution of Fractional Order Differential Equations by Extrapolation”, Numerical Algorithms, 16 (1997), 231–253 | DOI | MR | MR | Zbl | Zbl

[19] Diethelm K., Walz G., “Numerical solution of fractional order differential equations by extrapolation”, Numerical Algorithms, 16 (1997), 231–253 | DOI | MR | Zbl

[20] Alikhanov A. A., “Apriornye otsenki reshenii kraevykh zadach dlya uravnenii drobnogo poryadka”, Differents. uravneniya, 46:5 (2010), 658–664 | MR | Zbl

[21] Alikhanov A. A., “A new difference scheme for the time fractional diffusion equation”, J. Comput. Phys., 280 (2015), 424–438 | DOI | MR | Zbl

[22] Nerpin, S. V. and Chudnovskiy, A. F., Energy and Mass Transfer in the Plant–Soil–Air System, Gidrometeoizdat, L., 1975, 358 pp. (in Russian)

[23] Nigmatulin, R. R., “Relaxation Features of a System with Residual Memory”, Physics of the Solid State, 27:5 (1985), 1583–1585 (in Russian)

[24] Beshtokov, M. Kh., “Boundary Value Problems for Degenerating and Non-Degenerating Sobolev-Type Equations with a Nonlocal Source in Differential and Difference Forms”, Differential Equations, 54:2 (2018), 250–267 | DOI | DOI | MR | Zbl

[25] Beshtokov M. Kh., “The third boundary value problem for loaded differential Sobolev type equation and grid methods of their numerical implementation”, IOP Conf. Ser.: Mater. Sci. Eng., 158:1 (2016), 1–6 | DOI | MR

[26] Beshtokov, M. Kh., “To Boundary Value Problems for Degenerating Pseudoparabolic Equations with Gerasimov–Caputo Fractional Derivative”, Russian Mathematics, 62 (2018), 1–14 | DOI | MR | Zbl

[27] Beshtokov, M. Kh., “Boundary Value Problems for the Generalized Modified Moisture Transfer Equation and Difference Methods for Their Numerical Realization”, Applied Mathematics and Physics, 52:2 (2020), 128–138 (in Russian) | DOI | MR

[28] Beshtokov, M. Kh., “Boundary Value Problems for a Loaded Modified Time-Fractional Moisture Transfer Equation with a Bessel Operator and Difference Methods for Their Solution”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternyye Nauki, 30:2 (2020), 158–175 (in Russian) | MR | Zbl

[29] Samarskii, A. A., Theory of Difference Schemes, Nauka, M., 1983, 616 pp. (in Russian)

[30] Voyevodin, A. F. and Shugrin, S. M., Numerical Methods for Calculating One-Dimensional Systems, Nauka, Siberian Branch, Novosibirsk, 1981, 208 pp. (in Russian) | MR