@article{VMJ_2023_25_3_a0,
author = {T. A. Andreeva and D. N. Oskorbin and E. D. Rodionov},
title = {On conformal factor in the conformal {Killing} equation on the~$2$-symmetric five-dimensional indecomposable {Lorentzian} manifold},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {5--14},
year = {2023},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a0/}
}
TY - JOUR AU - T. A. Andreeva AU - D. N. Oskorbin AU - E. D. Rodionov TI - On conformal factor in the conformal Killing equation on the $2$-symmetric five-dimensional indecomposable Lorentzian manifold JO - Vladikavkazskij matematičeskij žurnal PY - 2023 SP - 5 EP - 14 VL - 25 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a0/ LA - ru ID - VMJ_2023_25_3_a0 ER -
%0 Journal Article %A T. A. Andreeva %A D. N. Oskorbin %A E. D. Rodionov %T On conformal factor in the conformal Killing equation on the $2$-symmetric five-dimensional indecomposable Lorentzian manifold %J Vladikavkazskij matematičeskij žurnal %D 2023 %P 5-14 %V 25 %N 3 %U http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a0/ %G ru %F VMJ_2023_25_3_a0
T. A. Andreeva; D. N. Oskorbin; E. D. Rodionov. On conformal factor in the conformal Killing equation on the $2$-symmetric five-dimensional indecomposable Lorentzian manifold. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 3, pp. 5-14. http://geodesic.mathdoc.fr/item/VMJ_2023_25_3_a0/
[1] Berestovskii V. N., Nikonorov Yu. G., Riemannian Manifolds and Homogeneous Geodesics, Springer Monographs in Mathematics, Springer, Cham, 2020, xxii+482 pp. | DOI | MR | Zbl
[2] Oskorbin, D. N. and Rodionov, E. D., “Ricci Solitons and Killing Fields on Generalized Cahen–Wallach Manifolds”, Siberian Mathematical Journal, 60 (2019), 911–915 | DOI | DOI | MR | Zbl
[3] Andreeva, T. A., Balashchenko, V. V. and Oskorbin, D. N., “Conformal Killing Fields on Symmetric Lorentzian Manifolds of Low Dimension”, Proceedings of the Seminar on Geometry and Mathematical Modeling, 6 (2020), 19–25 (in Russian)
[4] Hall G. S., Symmetries and Curvature Structure in General Relativity, World Sci. Lect. Notes Phys., 46, 2004, 440 pp. | DOI | MR
[5] Andreeva, T. A., Balashchenko, V. V., Oskorbin D. N. and Rodionov E. D., “Conformally Killing Fields on 2-Symmetric Five-Dimensional Lorentzian Manifolds”, Izvestiya of Altai State University, 117:1 (2021), 68–71 (in Russian) | DOI
[6] Cahen M., Wallach N., “Lorentzian symmetric spaces”, Bull. Amer. Math. Soc., 76:3 (1970), 585–592 | DOI | MR
[7] Galaev A. S., Alexeevskii D. V., “Two-symmetric Lorentzian manifolds”, J. Geometry Phys., 61:12 (2011), 2331–2340 | DOI | MR | Zbl
[8] Blanco O. F., Sanchez M., Senovilla J. M., “Structure of second-order symmetric Lorentzian manifold”, J. Eur. Math. Soc, 15:2 (2013), 595–634 | DOI | MR | Zbl
[9] Galaev A. S., Leistner T., “Holonomy groups of Lorentzian manifolds: classification, examples, and applications”, Recent Developments in Pseudo-Riemannian Geometry, 2008, 53–96 | DOI | MR | Zbl
[10] Walker A. G., “On parallel fields of partially null vector spaces”, Quart. J. Math., os-20:1 (1949), 135–145 | DOI | MR | Zbl
[11] Brozos-Vázquez M., García-Río E., Gilkey P., Nikčević S., Vázquez-Lorenzo R., The geometry of Walker manifolds, Synthesis Lect. Math. Statistics, Morgan Claypool Publ, 2009, 179 pp. | DOI | MR | Zbl
[12] Wu H., “On the de Rham decomposition theorem”, Illinois J. Math., 8:2 (1964), 291–311 | DOI | MR | Zbl
[13] Hall G. S., “Conformal symmetries and fixed points in spacetime”, J. Math. Phys., 31:5 (1989), 1198–1207 | DOI | MR
[14] Blau M., O'Loughlin M., “Homogeneous plane waves”, Nuclear Phys., 654:1–2 (2003), 135–176 | DOI | MR | Zbl
[15] Fedoryuk, M. V., “Eyri Functions”, Encyclopaedia of Mathematics, v. 5, ed. I. M. Vinogradov, Sovetskaya Entsiklopediya Publisher, M., 1985, 939–941 | MR