Positive isometries of Orlicz--Kantorovich spaces
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 2, pp. 103-116
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $B$ be a complete Boolean algebra,  $Q(B)$  the Stone compact of $B$, and let $C_\infty (Q(B))$ be the commutative unital algebra of all continuous functions $x: Q(B) \to [-\infty, +\infty]$, assuming possibly the values $\pm\infty$ on nowhere-dense subsets of $Q(B)$. We consider the Orlicz–Kantorovich spaces ${(L_{\Phi}(B,m), \|\cdot\|_{\Phi})\subset C_\infty (Q(B))}$  with the Luxembourg norm associated with an Orlicz function $\Phi$ and a vector-valued measure $m$, with values in the algebra of real-valued measurable functions. It is shown, that in the case when $\Phi$ satisfies the $(\Delta_2)$-condition, the norm $\|\cdot\|_{\Phi}$ is order continuous, that is, $\|x_n\|_{\Phi}\downarrow \mathbf{0}$ for every sequence $\{x_n\}\subset L_{\Phi}(B,m)$ with $x_n \downarrow \mathbf{0}$. Moreover, in this case, the norm $\|\cdot\|_{\Phi}$ is strictly monotone, that is, the conditions $|x|\lneqq |y|$, $x, y \in L_{\Phi}(B,m)$, imply  $\|x\|_{\Phi} \lneqq \|y\|_{\Phi}$. In addition, for positive elements $x, y \in L_{\Phi}(B,m)$, the equality  $\|x+y\|_{\Phi}=\|x-y\|_{\Phi}$  is valid if and only if  $x\cdot y = 0$. Using these properties of the Luxembourg norm, we prove that for any positive linear isometry  $V: L_{\Phi}(B,m) \to L_{\Phi}(B,m)$  there exists an injective normal homomorphisms  $T : C_\infty (Q(B)) \to C_\infty (Q(B))$  and a positive element  $y \in L_{\Phi}(B,m)$ such that  $V(x ) =y\cdot T(x)$  for all  $x\in L_{\Phi}(B,m)$.
			
            
            
            
          
        
      @article{VMJ_2023_25_2_a8,
     author = {B. S. Zakirov and V. I. Chilin},
     title = {Positive isometries of {Orlicz--Kantorovich} spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {103--116},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a8/}
}
                      
                      
                    B. S. Zakirov; V. I. Chilin. Positive isometries of Orlicz--Kantorovich spaces. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 2, pp. 103-116. http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a8/