Positive isometries of Orlicz--Kantorovich spaces
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 2, pp. 103-116

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B$ be a complete Boolean algebra, $Q(B)$ the Stone compact of $B$, and let $C_\infty (Q(B))$ be the commutative unital algebra of all continuous functions $x: Q(B) \to [-\infty, +\infty]$, assuming possibly the values $\pm\infty$ on nowhere-dense subsets of $Q(B)$. We consider the Orlicz–Kantorovich spaces ${(L_{\Phi}(B,m), \|\cdot\|_{\Phi})\subset C_\infty (Q(B))}$ with the Luxembourg norm associated with an Orlicz function $\Phi$ and a vector-valued measure $m$, with values in the algebra of real-valued measurable functions. It is shown, that in the case when $\Phi$ satisfies the $(\Delta_2)$-condition, the norm $\|\cdot\|_{\Phi}$ is order continuous, that is, $\|x_n\|_{\Phi}\downarrow \mathbf{0}$ for every sequence $\{x_n\}\subset L_{\Phi}(B,m)$ with $x_n \downarrow \mathbf{0}$. Moreover, in this case, the norm $\|\cdot\|_{\Phi}$ is strictly monotone, that is, the conditions $|x|\lneqq |y|$, $x, y \in L_{\Phi}(B,m)$, imply $\|x\|_{\Phi} \lneqq \|y\|_{\Phi}$. In addition, for positive elements $x, y \in L_{\Phi}(B,m)$, the equality $\|x+y\|_{\Phi}=\|x-y\|_{\Phi}$ is valid if and only if $x\cdot y = 0$. Using these properties of the Luxembourg norm, we prove that for any positive linear isometry $V: L_{\Phi}(B,m) \to L_{\Phi}(B,m)$ there exists an injective normal homomorphisms $T : C_\infty (Q(B)) \to C_\infty (Q(B))$ and a positive element $y \in L_{\Phi}(B,m)$ such that $V(x ) =y\cdot T(x)$ for all $x\in L_{\Phi}(B,m)$.
@article{VMJ_2023_25_2_a8,
     author = {B. S. Zakirov and V. I. Chilin},
     title = {Positive isometries of {Orlicz--Kantorovich} spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {103--116},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a8/}
}
TY  - JOUR
AU  - B. S. Zakirov
AU  - V. I. Chilin
TI  - Positive isometries of Orlicz--Kantorovich spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2023
SP  - 103
EP  - 116
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a8/
LA  - en
ID  - VMJ_2023_25_2_a8
ER  - 
%0 Journal Article
%A B. S. Zakirov
%A V. I. Chilin
%T Positive isometries of Orlicz--Kantorovich spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2023
%P 103-116
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a8/
%G en
%F VMJ_2023_25_2_a8
B. S. Zakirov; V. I. Chilin. Positive isometries of Orlicz--Kantorovich spaces. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 2, pp. 103-116. http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a8/