@article{VMJ_2023_25_2_a7,
author = {M. Yu. Zhukov and N. M. Polyakova},
title = {Asymptotic models of flow in a pipe with compliant walls},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {89--102},
year = {2023},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a7/}
}
M. Yu. Zhukov; N. M. Polyakova. Asymptotic models of flow in a pipe with compliant walls. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 2, pp. 89-102. http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a7/
[1] Barnard A. C. L., Hunt W. A., Timlake W. P., Varley E., “A theory of fluid flow in compliant tubes”, Biophysical Journal, 6:6 (1966), 717–724 | DOI
[2] Womersley J. R., “Oscillatory flow in arteries: the constrained elastic tube as a model of arterial flow and pulse transmission”, Phys. Med. Biol., 2:2 (1957), 178–187 | DOI
[3] Formaggia L., Nobile F., Quarteroni A., Veneziani A., “Multiscale modelling of the circulatory system: a preliminary analysis”, Computing and Visualization in Science, 2:2 (1999), 75–83 | DOI | MR | Zbl
[4] Formaggia L., Lamponi D., Quarteroni A., “One-dimensional models for blood flow in arteries”, Journal of Engineering Mathematics, 47 (2003), 251–276 | DOI | MR | Zbl
[5] Canic S., Li T., “Critical thresholds in a quasilinear hyperbolic model of blood flow”, Networks and Heterogeneous Media, 4:3 (2009), 527–536 | DOI | MR | Zbl
[6] Canic S., “Blood flow through compliant vessels after endovascular repair: wall deformations induced by the discontinuous wall properties”, Computing and Visualization in Science, 4 (2002), 147–155 | DOI | MR | Zbl
[7] Mikelic A., Guidoboni G., Canic S., “Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem”, Networks and Heterogeneous Media, 2:3 (2007), 397–423 | DOI | MR | Zbl
[8] Acosta S., Puelz C., Reviere R., Penny D. J., Bready K. M., Rusin C. G., “Cardiovascular mechanics in the early stages of pulmonary hypertension: a computational study”, Biomechanics and Modeling in Mechanobiology, 16 (2017), 2093–2112 | DOI
[9] Fernandez M. A., Milisic V., Quarteroni A., Analysis of a geometrical multiscale blood flow model based on the coupling of ODE's and hyperbolic PDE'S, Research Report RR-5127, INRIA, 2004, 29 pp. | MR
[10] Ovsyannikov L. V., Makarenko N. I., Nalimov V. I. etc., Nonlinear Problems of Theoretical and Internal Waves, Nauka, Novosibirsk, 1985, 319 pp. (in Russian) | MR
[11] Karpman V. I., Nonlinear Waves in Dispersive Media, Nauka, M., 1973, 176 pp. (in Russian)
[12] Gibbon J. D., McGuinness M. J., “Amplitude equations at the critical points of unstable dispersive physical systems”, Proceedings of the Royal Society of London. Ser. A, Mathematical and Physical Sciences, 377:1769 (1981), 185–219 | DOI | MR | Zbl
[13] Agrawal B., Mohd I. K., “Mathematical modeling of blood flow”, International Journal of Statistics and Applied Mathematics, 6:4 (2021), 116–122 | MR
[14] Labadin J., Ahmadi A., “Mathematical modeling of the arterial blood flow”, Proceedings of the 2nd IMT-GT Regional Conference on Mathematics, Statistics and Applications (University Sains Malaysia, Penang, 2006), 222–226
[15] Sviridova N. V., Vlasenko V. D., “Modeling of Hemodynamic Processes of the Cardiovascular System Based on Peripheral Arterial Pulsation Data”, Mathematical Biology and Bioinformatics, 9:1 (2014), 195–205 (in Russian) | DOI
[16] Astrakhantseva E. V., Gidaspov V. Yu., Reviznikov D. L., “Mathematical Modeling of Hemodynamics of Large Blood Vessels”, Mathematical Modeling, 17:8 (2005), 61–80 (in Russian) | Zbl
[17] Khmel' T. A., Fedorov A. V., “Simulation of Pulsating Flows in Blood Capillaries”, Mathematical Biology and Bioinformatics, 8:1 (2013), 1–11 (in Russian) | DOI
[18] Zhukov M. Yu., Polyakova N. M., Shiryaeva E. V., “Quasi-Stationary Turbulent Flow in Cylinder Channel with Irregular Walls”, Bulletin of Higher Educational Institutions. North Caucasus Region. Natural Sciences. Physical and Mathematical Sciences, 1 (2020), 4–10 (in Russian) | DOI
[19] Volobuev A. N., “Fluid Flow in Pipes with Elastic Walls”, Advances in the Physical Sciences, 165:2 (1995), 177–186 (in Russian) | DOI
[20] Piccioli F., Bertaglia G., Valiani A., Caleffi V., “Modeling blood flow in networks of viscoelastic vessels with the 1-D augmented fluid-structure interaction system”, J. of Computational Physics, 464 (2022), 111364 | DOI | MR
[21] Kudryashov N. A., Sinel'shchikov D. I., Chernyavskiy I. L., “Nonlinear Evolution Equations for Description of Perturbations in a Viscoelastic Tube”, Nonlinear Dynamics, 4:1 (2008), 69–86 (in Russian) | DOI
[22] Landau L. D., Lifshits E. M., Theoretical Physics, v. VI, Hydrodynamics, 4th ed., Nauka, M., 1986, 736 pp. (in Russian) | MR
[23] Zhukov M. Yu., Shiryaeva E. V., Polyakova N. M., Modeling the Evaporation of a Liquid Drop, Southern Federal University Press, Rostov-on-Don, 2015, 208 pp. (in Russian)
[24] Samokhin A. V., Dement'ev Yu. I., “Simulation of Solitary Waves of the KdV-Burgers Equation in Dissipatively Inhomogeneous Media”, Civil Aviation High Technologies, 21:2 (2018), 114–121 (in Russian) | DOI
[25] Chernyavskiy I. L., Mathematical Modeling of Wave Processes and Autoregulation During Blood Flow in Vessels, RAS MEPhI, M., 2008, 135 pp. (in Russian)
[26] Johnson R. S., “A non-linear equation incorporating damping and dispersion”, Journal of Fluid Mechanics, 42:1 (1970), 49–60 | DOI | MR | Zbl
[27] Kudryashov N. A., Analytic Theory of Nonlinear Differential Equations, Institute of Computer Research, M.–Izhevsk, 2004, 360 pp. (in Russian)
[28] Bagaev S. N., Zakharov V. N., Orlov V. A., “On the Necessity of the Helical Movement of Blood”, Russian Journal of Biomechanics, 6:4 (2002), 30–50 (in Russian)
[29] Karo K., Pedli T., Shroter R., Sid U., Mechanics of Blood Circulation, Mir, M., 1981, 624 pp. (in Russian)
[30] Dinnar U., Cardiovascular Fluid Dynamics, CRC Press Taylor Francis Group, 1981, 260 pp. | DOI | Zbl
[31] Bessonov N., Sequeira A., Simakov S., Vassilevskii Yu., Volpert V., “Methods of blood flow modelling”, Math. Model. Nat. Phenom., 11:1 (2016), 1–25 | DOI | MR | Zbl