@article{VMJ_2023_25_2_a6,
author = {A. V. Epifanov and V. G. Tsybulin},
title = {Mathematical model of the ideal distribution of related species in a nonhogeneous environment},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {78--88},
year = {2023},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a6/}
}
TY - JOUR AU - A. V. Epifanov AU - V. G. Tsybulin TI - Mathematical model of the ideal distribution of related species in a nonhogeneous environment JO - Vladikavkazskij matematičeskij žurnal PY - 2023 SP - 78 EP - 88 VL - 25 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a6/ LA - ru ID - VMJ_2023_25_2_a6 ER -
A. V. Epifanov; V. G. Tsybulin. Mathematical model of the ideal distribution of related species in a nonhogeneous environment. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 2, pp. 78-88. http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a6/
[1] Murray J. D., Mathematical Biology II: Spatial Models and Biomedical Applications, Springer-Verlag, New York, 2003, 814 pp. | DOI | MR
[2] Rubin A., Riznichenko G., Mathematical Biophysics, Springer, New York, 2014, 273 pp. | DOI | Zbl
[3] Frisman Y. Y., Kulakov M. P., Revutskaya O. L., Zhdanova O. L., Neverova G. P., “The Key Approaches and Review of Current Researches on Dynamics of Structured and Interacting Populations”, Computer Research and Modeling, 11:1 (2019), 119–151 | DOI | MR
[4] Fretwell S. D., Lucas H. L., “On territorial behavior and other factors influencing habitat selection in birds, Theoretical development”, Acta Biotheor., 19 (1969), 16–36 | DOI
[5] Lessells C. M., “Putting resource dynamics into continuous free distribution models”, Animal Behaviour, 49:2 (1995), 487–494 | DOI
[6] Avgar T., Betini G. S., Fryxell J. M., “Habitat selection patterns are density dependent under the ideal free distribution”, J. Animal Ecology, 89:12 (2020), 2777–2787 | DOI
[7] Averill I., Lou Y., Munther D., “On several conjectures from evolution of dispersal”, J. Biol. Dyn., 6 (2012), 117–130 | DOI | Zbl
[8] Cantrell R. S., Cosner C., Lewis M. A., Lou Y., “Evolution of dispersal in spatial population models with multiple timescales”, J. Mathematical Biology, 80 (2020), 3–37 | DOI | MR | Zbl
[9] Cantrell R. S. Cosner C., Martinez S., Torres N., “On a competitive system with ideal free dispersal”, J. Differential Equations, 265:8 (2018), 3464–3493 | DOI | MR
[10] Gejji R. Lou Y., Munther D., Peyton J., “Evolutionary convergence to ideal free dispersal strategies and coexistence”, Bull. Math. Biol., 74 (2012), 257–299 | DOI | MR | Zbl
[11] Munther D., “The ideal free strategy with weak Allee effect”, J. Differential Equations, 254:4 (2013), 1728–1740 | DOI | MR | Zbl
[12] Lam K.-Y., Munther D., “Invading the ideal free distribution”, Discrete and Continuous Dynamical Systems, 19:10 (2014), 3219–3244 | DOI | MR | Zbl
[13] Zelenchuk P. A., Tsybulin V. G., “The Ideal Free Distribution in a Predator-Prey Model with Multifactor Taxis”, Biophysics, 66:3 (2021), 464–471 | DOI | DOI | MR
[14] Frischmuth K., Kovaleva E. S., Tsybulin V. G., “Family of equilibria in a population kinetics model and its collapse”, Nonlinear Analysis: Real World Applications, 12 (2011), 145–155 | DOI | MR
[15] Budyansky A. V., Frischmuth K., Tsybulin V. G., “Cosymmetry approach and mathematical modeling of species coexistence in a heterogeneous habitat”, Discrete and Continuous Dynamical Systems –B, 24:2 (2019), 547–561 | DOI | MR | Zbl
[16] Yudovich V. I., “Cosymmetry, Degeneration of Solutions of Operator Equations, and Onset of a Filtration Convection”, Mathematical Notes of the Academy of Sciences of the USSR, 49 (1991), 540–545 | DOI | MR | Zbl
[17] Yudovich V. I., “Secondary cycle of equilibria in a system with cosymmetry, its creation by bifurcation and impossibility of symmetric treatment of it”, Chaos, 5:2 (1995), 402–411 | DOI | MR | Zbl
[18] Yudovich V. I., “Bifurcations Under Perturbations Violating Cosymmetry”, Doklady Physics, 49 (2004), 522–526 | DOI | MR
[19] “Epifanov A. V., Tsybulin V. G.”, Computer Research and Modeling, 9:5 (2017), 799–813 (in Russian) | DOI
[20] Frischmuth K., Budyansky A. V., Tsybulin V. G., “Modeling of invasion on a heterogeneous habitat: taxis and multistability”, Applied Mathematics and Computation, 410 (2021), 126456 | DOI | MR | Zbl
[21] Samarskii A. A., The Theory of Difference Schemes, CRC Press, Boca Raton, 2001 | DOI | MR