@article{VMJ_2023_25_2_a5,
author = {M. Douib and S. Zitouni},
title = {Exponential stability for a swelling porous-heat system with thermodiffusion effects and delay},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {65--77},
year = {2023},
volume = {25},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a5/}
}
TY - JOUR AU - M. Douib AU - S. Zitouni TI - Exponential stability for a swelling porous-heat system with thermodiffusion effects and delay JO - Vladikavkazskij matematičeskij žurnal PY - 2023 SP - 65 EP - 77 VL - 25 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a5/ LA - en ID - VMJ_2023_25_2_a5 ER -
M. Douib; S. Zitouni. Exponential stability for a swelling porous-heat system with thermodiffusion effects and delay. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 2, pp. 65-77. http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a5/
[1] Ieşan D., Quintanilla R., “Existence and Continuous Dependence Results in the Theory of Interacting Continua”, Journal of Elasticity, 36:1 (1994), 85–98 | DOI | MR | Zbl
[2] Apalara T. A., “Well-Posedness and Exponential Stability for a Linear Damped Timoshenko System with Second Sound and Internal Distributed Delay”, Electronic Journal of Differential Equations, 2014:254 (2014), 1–15 | MR
[3] Choucha A., Boulaaras S. M., Ouchenane D., Cherif B. B., Abdalla M., “Exponential Stability of Swelling Porous Elastic with a Viscoelastic Damping and Distributed Delay Term”, Journal of Function Spaces, 2021 (2021), 1–8 | DOI | MR
[4] Kafini M., Messaoudi S. A., Mustafa M. I., Apalara T., “Well-Posedness and Stability Results in a Timoshenko-Type System of Thermoelasticity of Type III with Delay”, Zeitschrift für Angewandte Mathematik und Physik, 66:4 (2015), 1499–1517 | DOI | MR | Zbl
[5] Mustafa M. I., “A Uniform Stability Result for Thermoelasticity of Type III with Boundary Distributed Delay”, Journal of Mathematical Analysis and Applications, 415:1 (2014), 148–158 | DOI | MR | Zbl
[6] Nicaise S., Pignotti C., “Stability and Instability Results of the Wave Equation with a Delay Term in the Boundary or Internal Feedbacks”, SIAM Journal on Control and Optimization, 45:5 (2006), 1561–1585 | DOI | MR | Zbl
[7] Nicaise S., Pignotti C., “Stabilization of the Wave Equation with Boundary or Internal Distributed Delay”, Differential and Integral Equations, 21:9–10 (2008), 935–958 | DOI | MR | Zbl
[8] Ramos A. J. A., Almeida Júnior D. S., Freitas M. M., Noé A. S., Dos Santos M. J., “Stabilization of Swelling Porous Elastic Soils with Fluid Saturation and Delay Time Terms”, Journal of Mathematical Physics, 62:2 (2021), 1–10 | DOI | MR
[9] Datko R., “Not All Feedback Stabilized Hyperbolic Systems are Robust with Respect to Small Time Delays in their Feedbacks”, SIAM Journal on Control and Optimization, 26:3 (1988), 697–713 | DOI | MR | Zbl
[10] Datko R., Lagnese J., Polis M. P., “An Example on the Effect of Time Delays in Boundary Feedback Stabilization of Wave Equations”, SIAM Journal on Control and Optimization, 24:1 (1986), 152–156 | DOI | MR | Zbl
[11] Racke R., “Instability of Coupled Systems with Delay”, Communications on Pure and Applied Analysis, 11:5 (2012), 1753–1773 | DOI | MR | Zbl
[12] Apalara T. A., “General Stability Result of Swelling Porous Elastic Soils with a Viscoelastic Damping”, Zeitschrift für Angewandte Mathematik und Physik, 71:6 (2020), 1–10 | DOI | MR
[13] Bofill F., Quintanilla R., “Anti-Plane Shear Deformations of Swelling Porous Elastic Soils”, International Journal of Engineering Science, 41:8 (2003), 801–816 | DOI | MR | Zbl
[14] Choucha A., Boulaaras S. M., Ouchenane D., Cherif B. B., Hidan M., Abdalla M., “Exponential Stabilization of a Swelling Porous-Elastic System with Microtemperature Effect and Distributed Delay”, Journal of Function Spaces, 2021 (2021), 5513981, 1–11 | DOI | MR
[15] Keddi A., Messaoudi S. A., Alahyane M., “Well-posedness and Stability Results for a Swelling Porous-Heat System of Second Sound”, Journal of Thermal Stresses, 44:12 (2021), 1427–1440 | DOI | MR
[16] Murad M. A., Cushman J. H., “Thermomechanical Theories for Swelling Porous Media with Microstructure”, International Journal of Engineering Science, 38:5 (2000), 517–564 | DOI | MR | Zbl
[17] Quintanilla R., “Exponential Stability for One-Dimensional Problem of Swelling Porous Elastic Soils with Fluid Saturation”, Journal of Computational and Applied Mathematics, 145:2 (2002), 525–533 | DOI | MR | Zbl
[18] Quintanilla R., “Exponential Stability of Solutions of Swelling Porous Elastic Soils”, Meccanica, 39:2 (2004), 139–145 | DOI | MR | Zbl
[19] Quintanilla R., “On the Linear Problem of Swelling Porous Elastic Soils with Incompressible Fluid”, International Journal of Engineering Science, 40:13 (2002), 1485–1494 | DOI | MR | Zbl
[20] Wang J. M., Guo B. Z., “On the Stability of Swelling Porous Elastic Soils with Fluid Saturation by one Internal Damping”, IMA Journal of Applied Mathematics, 71:4 (2006), 565–582 | DOI | MR | Zbl
[21] Goldstein, J. A., Semigroups of Linear Operators and Applications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985 | MR
[22] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983 | MR | Zbl