@article{VMJ_2023_25_2_a4,
author = {A. Dastouri and A. Ranjbari},
title = {Functions with uniform sublevel sets on cones},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {56--64},
year = {2023},
volume = {25},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a4/}
}
A. Dastouri; A. Ranjbari. Functions with uniform sublevel sets on cones. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 2, pp. 56-64. http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a4/
[1] Weidner P., “Construction Functions with Uniform Sublevel Sets”, Optimization Letters, 12:1 (2018), 35–41 | DOI | MR | Zbl
[2] Gerstewitz Ch., Iwanow E., “Dualitat fur Nichtkonvexe Vektoroptimierungsprobleme”, Wiss. Z. Tech. Hochsch. Ilmenau, 31:2 (1985), 61–81 | MR | Zbl
[3] Gerth C., Weidner P., “Nonconvex Separation Theorems and Some Applications in Vector Optimization”, Journal of Optimization Theory and Applications, 67 (1990), 297–320 | DOI | MR | Zbl
[4] Weidner P., Ein Trennungskonzept und seine Anwendung auf Vektoroptimierungsverfahren, Habilitation Thesis, Martin Luther Universitat Halle-Wittenberg, 1990
[5] Köbis E., Köbis M., “Treatment of Set Order Relations by Means of a Nonlinear Scalarization Functional: a Full Characterization”, Optimization: A Journal of Mathematical Programming and Operations Research, 65:10 (2016), 1805–1827 | DOI | MR | Zbl
[6] Keimel K., Roth W., Ordered Cones and Approximation, Lecture Notes in Mathematics, 1517, Springer-Verlag, Heidelberg–Berlin–New York, 1992 | DOI | MR | Zbl
[7] Roth W., Operator-Valued Measures and Integrals for Cone-Valued Functions, Lecture Notes in Mathematics, 1964, Springer-Verlag, Berlin, 2009 | MR | Zbl
[8] Roth W., “Hahn-Banach Type Theorems for Locally Convex Cones”, Journal of the Australian Mathematical Society, 68:1 (2000), 104–125 | DOI | MR | Zbl
[9] Ayaseh D., Ranjbari A., “Locally Convex Quotient Lattice Cones”, Mathematische Nachrichten, 287:10 (2014), 1083–1092 | DOI | MR | Zbl
[10] Ayaseh D., Ranjbari A., “Bornological Locally Convex Cones”, Le Matematiche (Catania), 69:2 (2014), 267–284 | DOI | MR | Zbl
[11] Jafarizad S., Ranjbari A., “Openness and Continuity in Locally Convex Cones”, Filomat, 31:16 (2017), 5093–5103 | DOI | MR | Zbl