Asymptotic almost automorphy for algebras of generalized functions
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 2, pp. 38-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper aims to to study the concept of asymptotic almost automorphy in the context of generalized functions. We introduce an algebra of asymptotically almost automorphic generalized functions which contains the space of smooth asymptotically almost automorphic functions as a subalgebra. The fundamental importance of this algebra, is related to the impossibility of multiplication of distributions; it also contains the asymptotically almost automorphic Sobolev–Schwartz distributions as a subspace. Moreover, it is shown that the introduced algebra is stable under some nonlinear operations. As a by pass result, the paper gives a Seeley type result on extension of functions in the context of the algebra of bounded generalized functions and the algebra of bounded generalized functions vanishing at infinity, these results are used to prove the fundamental result on the uniqueness of decomposition of an asymptotically almost automorphic generalized function. As applications, neutral difference-differential systems are considered in the framework of the algebra of generalized functions.
@article{VMJ_2023_25_2_a3,
     author = {Ch. Bouzar and M. Slimani},
     title = {Asymptotic almost automorphy for algebras of generalized functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {38--55},
     year = {2023},
     volume = {25},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a3/}
}
TY  - JOUR
AU  - Ch. Bouzar
AU  - M. Slimani
TI  - Asymptotic almost automorphy for algebras of generalized functions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2023
SP  - 38
EP  - 55
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a3/
LA  - en
ID  - VMJ_2023_25_2_a3
ER  - 
%0 Journal Article
%A Ch. Bouzar
%A M. Slimani
%T Asymptotic almost automorphy for algebras of generalized functions
%J Vladikavkazskij matematičeskij žurnal
%D 2023
%P 38-55
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a3/
%G en
%F VMJ_2023_25_2_a3
Ch. Bouzar; M. Slimani. Asymptotic almost automorphy for algebras of generalized functions. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 2, pp. 38-55. http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a3/

[1] Bochner S., “Uniform Convergence of Monotone Sequences of Functions”, Proceedings of the National Academy of Sciences USA, 47:4 (1961), 582–585 | DOI | MR | Zbl

[2] Bochner S., “Continuous Mappings of Almost Automorphic and Almost Periodic Functions”, Proceedings of the National Academy of Sciences USA, 52:4 (1964), 907–910 | DOI | MR | Zbl

[3] Bochner S., “A New Approach to Almost Periodicity”, Proceedings of the National Academy of Sciences USA, 48:12 (1962), 2039–2043 | DOI | MR | Zbl

[4] Bohr H., Almost Periodic Functions, Chelsea Publishing Company, 1947 | MR

[5] Stepanoff V. V., “Sur Quelques Généralisations des Fonctions Presque Périodiques”, Comptes Rendus de l'Académie des Sciences, 181, Paris, 1925, 90–92 | MR

[6] Levitan B. M., Almost Periodic Functions, Gos. Izdat. Tekh-Teor. Lit., M., 1953 (in Russian) | MR | Zbl

[7] Fréchet M., “Les Fonctions Asymptotiquement Presque Périodiques”, Revue Sci., 79 (1941), 341–354 | MR

[8] N'Guerekata G. M., “Some Remarks on Asymptotically Almost Automorphic Functions”, The Mathematical Revue of the University of Parma $(4)$, 13 (1987), 301–303 | MR | Zbl

[9] Bouzar C., Tchouar F. Z., “Asymptotic Almost Automorphy Of Functions And Distributions”, Ural Mathematical Journal, 6:1 (2020), 54–70 | DOI | MR | Zbl

[10] Sobolev S. L., Applications of Functional Analysis In Mathematical Physics, American Mathematical Society, 1963 | MR | Zbl

[11] Schwartz L., Théorie des Distributions, 2nd ed., Hermann, 1966 | MR

[12] Cioranescu I., “Asymptotically Almost Periodic Distributions”, Applicable Analysis, 34:3–4 (1989), 251–259 | DOI | MR | Zbl

[13] Bouzar C., Tchouar F. Z., “Almost Automorphic Distributions”, Mediterranean Journal of Mathematics, 14:04 (2017), 1–13 | DOI | MR

[14] Schwartz L., “Sur l'Impossibilité de la Multiplication des Distributions”, Comptes Rendus de l'Académie des Sciences, 239 (1954), 847–848 | MR | Zbl

[15] Colombeau J.-F., Elementary Introduction to New Generalized Functions, North Holland, 1985 | MR | Zbl

[16] Egorov Yu. V., “A Contribution to the Theory of Generalized Functions”, Russian Mathematical Surveys, 45:5 (1990), 1–49 | DOI | MR | Zbl

[17] Antonevich A. B., and Radyno Ya. V., “On a General Method of Constructing Algebras of New Generalized Functions”, Soviet Mathematics — Doklady, 43:3 (1991), 680–684 | MR | Zbl

[18] Bouzar C., Khalladi M. T., “Almost Periodic Generalized Functions”, Novi Sad Journal of Mathematics, 41:1 (2011), 33–42 | MR | Zbl

[19] Bouzar C., Khalladi M. T., “Linear Differential Equations in the Algebra of Almost Periodic Generalized Functions”, Rendiconti del Seminario Matematico Università e Politecnico di Torino, 70:2 (2012), 111–120 | MR | Zbl

[20] Bouzar C., Khalladi M. T., “Asymptotically Almost Periodic Generalized Functions”, Operator Theory: Advances and Applications, 231 (2013), 261–272 | MR

[21] Bouzar C., and Khalladi M. T., “On Asymptotically Almost Periodic Generalized Solutions of Differential Equations”, Operator Theory: Advances and Applications, 245 (2015), 35–43 | DOI | MR | Zbl

[22] Bouzar C., Khalladi M. T., Tchouar F. Z., “Almost Automorphic Generalized Functions”, Novi Sad Journal of Mathematics, 45:1 (2015), 207–214 | DOI | MR | Zbl

[23] Garetto C., “Topological Structures in Colombeau Algebras”, Monatshefte fur Mathematik, 146:3 (2005), 203–226 | DOI | MR | Zbl

[24] Seeley R. T., “Extension of $C^{\infty }$ Functions Defined in a Half Space”, Proceedings of the American Mathematical Society, 15:4 (1964), 625–626 | DOI | MR | Zbl