Asymptotic almost automorphy for algebras of generalized functions
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 2, pp. 38-55
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper aims to to study the concept of asymptotic almost automorphy in the context of generalized functions. We introduce an algebra of asymptotically almost automorphic generalized functions which contains the space of smooth asymptotically almost automorphic functions as a subalgebra. The fundamental importance of this algebra, is related to the impossibility of multiplication of distributions; it also contains the asymptotically almost automorphic Sobolev–Schwartz distributions as a subspace. Moreover, it is shown that the introduced algebra is stable under some nonlinear operations. As a by pass result, the paper gives a Seeley type result on extension of functions in the context of the algebra of bounded generalized functions and the algebra of bounded generalized functions vanishing at infinity, these results are used to prove the fundamental result on the uniqueness of decomposition of an asymptotically almost automorphic generalized function. As applications, neutral difference-differential systems are considered in the framework of the algebra of generalized functions.
@article{VMJ_2023_25_2_a3,
author = {Ch. Bouzar and M. Slimani},
title = {Asymptotic almost automorphy for algebras of generalized functions},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {38--55},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a3/}
}
TY - JOUR AU - Ch. Bouzar AU - M. Slimani TI - Asymptotic almost automorphy for algebras of generalized functions JO - Vladikavkazskij matematičeskij žurnal PY - 2023 SP - 38 EP - 55 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a3/ LA - en ID - VMJ_2023_25_2_a3 ER -
Ch. Bouzar; M. Slimani. Asymptotic almost automorphy for algebras of generalized functions. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 2, pp. 38-55. http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a3/