Isomorphism between the algebra of measurable functions and its subalgebra of approximately differentiable functions
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 2, pp. 25-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper is devoted to study of certain classes of homogeneous regular subalgebras of the algebra of all complex-valued measurable functions on the unit interval. It is known that the transcendence degree of a commutative unital regular algebra is one of the important invariants of such algebras together with Boolean algebra of its idempotents. It is also known that if $(\Omega, \Sigma, \mu)$ is a Maharam homogeneous measure space, then two homogeneous unital regular subalgebras of $S(\Omega)$ are isomorphic if and only if their Boolean algebras of idempotents are isomorphic and transcendence degrees of these algebras coincide. Let $S(0,1)$ be the algebra of all (classes of equivalence) measurable complex-valued functions and let $AD^{(n)}(0,1)$ ($n\in \mathbb{N}\cup\{\infty\}$) be the algebra of all (classes of equivalence of) almost everywhere $n$-times approximately differentiable functions on $[0,1].$ We prove that $AD^{(n)}(0,1)$ is a regular, integrally closed, $\rho$-closed, $c$-homogeneous subalgebra in $S(0,1)$ for all $n\in \mathbb{N}\cup\{\infty\},$ where $c$ is the continuum. Further we show that the algebras $S(0,1)$ and $AD^{(n)}(0,1)$ are isomorphic for all $n\in \mathbb{N}\cup\{\infty\}.$ As an application of these results we obtain that the dimension of the linear space of all derivations on $S(0,1)$ and the order of the group of all band preserving automorphisms of $S(0,1)$ coincide and are equal to $2^c.$ Finally, we show that the Lie algebra $\operatorname{Der} S(0, 1)$ of all derivations on $S(0,1)$ contains a subalgebra isomorphic to the infinite dimensional Witt algebra.
@article{VMJ_2023_25_2_a2,
     author = {Sh. A. Ayupov and Kh. K. Karimov and K. K. Kudaybergenov},
     title = {Isomorphism between the algebra of measurable functions and its subalgebra of approximately differentiable functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {25--37},
     year = {2023},
     volume = {25},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a2/}
}
TY  - JOUR
AU  - Sh. A. Ayupov
AU  - Kh. K. Karimov
AU  - K. K. Kudaybergenov
TI  - Isomorphism between the algebra of measurable functions and its subalgebra of approximately differentiable functions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2023
SP  - 25
EP  - 37
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a2/
LA  - en
ID  - VMJ_2023_25_2_a2
ER  - 
%0 Journal Article
%A Sh. A. Ayupov
%A Kh. K. Karimov
%A K. K. Kudaybergenov
%T Isomorphism between the algebra of measurable functions and its subalgebra of approximately differentiable functions
%J Vladikavkazskij matematičeskij žurnal
%D 2023
%P 25-37
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a2/
%G en
%F VMJ_2023_25_2_a2
Sh. A. Ayupov; Kh. K. Karimov; K. K. Kudaybergenov. Isomorphism between the algebra of measurable functions and its subalgebra of approximately differentiable functions. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 2, pp. 25-37. http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a2/

[1] Neumann J. V., “On Regular Rings”, Proceedings of the National Academy of Sciences of the United States of America, 22:12 (1936), 707–713 | DOI | MR | Zbl

[2] Neumann J. V., “Continuous Rings and Their Arithmetics”, Proceedings of the National Academy of Sciences of the United States of America, 23:6 (1937), 341–349 | DOI | Zbl

[3] Neumann J. V., Continuous Geometry, Princeton University Press, Princeton, N.J., 1960 | MR | Zbl

[4] Ayupov Sh. A., Kudaybergenov K. K., “Ring Isomorphisms of Murray–von Neumann Algebras”, Journal of Functional Analysis, 280:5 (2021), 108891 | DOI | MR | Zbl

[5] Ayupov Sh. A., Kudaybergenov K. K., “Ring Isomorphisms of $\ast$-Subalgebras of Murray–von Neumann Factors”, Lobachevskii Journal of Mathematics, 42:12 (2021), 2730–2739 | DOI | MR | Zbl

[6] Mori M., “Lattice Isomorphisms Between Projection Lattices of von Neumann Algebras”, Forum of Mathematics, Sigma, 8:49 (2020), 19 pp. | DOI | MR

[7] Kusraev A. G., “Automorphisms and Derivations on a Universally Complete Complex $f$-Algebra”, Siberian Mathematical Journal, 47:1 (2006), 77–85 | DOI | MR | Zbl

[8] Ayupov Sh. A., Kudaybergenov K. K., Karimov Kh., “Isomorphisms of Commutative Regular Algebras”, Positivity, 26 (2022), 11, 15 pp. | DOI | MR | Zbl

[9] Berberian S. K., “Baer $\ast$-Rings”, Grundlehren der mathematischen Wissenschaften, 195 (1972), Springer-Verlag, New York–Berlin | DOI | MR | Zbl

[10] Goodearl K. R., Von Neumann Regular Rings, Monographs and Studies in Mathematics, 4, Pitman, Boston, Massachusetts–London, 1979 | MR | Zbl

[11] Clifford A. N., Preston G. B., The Algebraic Theory of Semigroup, Mathemtical Surveys, American Mathematical Society, 1961 | MR

[12] Ber A. F., Chilin V. I., Sukochev F. A., “Non-trivial Derivations on Commutative Regular Algebras”, Extracta Mathematicae, 21:2 (2006), 107–147 | MR | Zbl

[13] Fremlin D., “Measure Algebras”, Handbook of Boolean algebras, v. 3, North-Holland, Amsterdam, 1989, 877–980 | MR

[14] Gutman A. E., Kusraev A. G., Kutateladze S. S., “The Wickstead Problem”, Siberian Electronic Mathematical Reports, 5 (2008), 293–333 | MR | Zbl

[15] Maharam D., “On Homogeneous Measure Algebras”, Proceedings of the National Academy of Sciences of the United States of America, 28:3 (1942), 108–111 | DOI | MR | Zbl

[16] Vladimirov D. A., Boolean Algebras in Analysis, Mathematics and Its Applications, 540, Kluwer Academic Publishers, Dordrecht, 2002 | DOI | MR | Zbl

[17] Federer H., Geometric Measure Theory, Springer, Heidelberg–New York, 1996 | MR | Zbl

[18] Ber A. F., Kudaybergenov K. K., Sukochev F. A., “Notes on Derivations of Murray–von Neumann Algebras”, Journal of Functional Analysis, 279:5 (2020), 108589 | DOI | MR | Zbl

[19] Ber A. F., “Derivations on Commutative Regular Algebras”, Siberian Advances in Mathematics, 21 (2011), 161–169 | DOI | MR

[20] Whitney H., “On Totally Differentiable and Smooth Functions”, Pacific Journal of Mathematics, 1:1 (1951), 143–159 | DOI | MR | Zbl

[21] Movshovich E. E., “Extension of Lipschitz Functions”, Mathematical Notes, 27 (1980), 92–93 | DOI | MR | Zbl

[22] Jacobson N., Lectures in Abstract Algebra, v. II, Linear Algebra, Springer-Verlag, New York–Berlin, 1975 | DOI | MR | Zbl

[23] Cartan E., “Les Groupes de Transformations Continus, Infinis, Simples”, Annales Scientifiques de l'École Normale Supérieure, 26 (1909), 93–161 | DOI | MR

[24] Bogachev V. I., Measure Theory, v. I, Springer–Verlag, Berlin, 2007 | MR | Zbl

[25] Ber A. F., Kudaybergenov K. K., Sukochev F. A., “Derivation on Murray–von Neumann Algebras”, Russian Mathematical Surveys, 74:5 (2019), 950–952 | DOI | MR | Zbl

[26] Ber A. F., Kudaybergenov K. K., Sukochev F. A., “Derivations of Murray–von Neumann Algebras”, Journal für die Reine und Angewandte Mathematik, 791:10 (2022), 283–301 | DOI | MR | Zbl

[27] Kusraev A. G., Dominated Operators, Kluwer Academic Publishers, Dordrecht, 2000 | DOI | MR | Zbl