Optimal recovery of a family of operators from inaccurate measurements on a compact
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 2, pp. 124-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a one-parameter family of linear continuous operators $T(t)\colon L_2(\mathbb R^d)\to L_2(\mathbb R^d)$, $0\le t<\infty$, we consider the problem of optimal recovery of the values of the operator $T ( \tau)$ on the whole space by approximate information about the values of the operators $T(t)$, where $t$ runs through some compact set $K\subset \mathbb R_ + $ and $\tau\notin K$. A family of optimal methods for recovering the values of the operator $T(\tau)$ is found. Each of these methods uses approximate measurements at no more than two points from $K$ and depends linearly on these measurements. As a consequence, families of optimal methods are found for restoring the solution of the heat equation at a given moment of time from its inaccurate measurements on other time intervals and for solving the Dirichlet problem for a half-space on a hyperplane from its inaccurate measurements on other hyperplanes. The problem of optimal recovery of the values of the operator $T(\tau)$ from the indicated information is reduced to finding the value of some extremal problem for the maximum with a continuum of inequality-type constraints, i. e., to finding the least upper bound of the a functional under these constraints. This rather complicated task is reduced, in its turn, to the infinite-dimensional problem of linear programming on the vector space of all finite real measures on the $\sigma$-algebra of Lebesgue measurable sets in $\mathbb R^d$. This problem can be solved using some generalization of the Karush–Kuhn–Tucker theorem, and its the value coincides with the value of the original problem.
@article{VMJ_2023_25_2_a10,
     author = {E. O. Sivkova},
     title = {Optimal recovery of a family of operators from inaccurate measurements on a compact},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {124--135},
     year = {2023},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a10/}
}
TY  - JOUR
AU  - E. O. Sivkova
TI  - Optimal recovery of a family of operators from inaccurate measurements on a compact
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2023
SP  - 124
EP  - 135
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a10/
LA  - ru
ID  - VMJ_2023_25_2_a10
ER  - 
%0 Journal Article
%A E. O. Sivkova
%T Optimal recovery of a family of operators from inaccurate measurements on a compact
%J Vladikavkazskij matematičeskij žurnal
%D 2023
%P 124-135
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a10/
%G ru
%F VMJ_2023_25_2_a10
E. O. Sivkova. Optimal recovery of a family of operators from inaccurate measurements on a compact. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 2, pp. 124-135. http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a10/

[1] Magaril-Il'yaev G. G., Tikhomirov V. M., Convex Analysis and its Applications, URSS, M., 2020, 176 pp. (in Russian) | MR

[2] Stein E. M., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, 1, Princeton University Press, New Jersey, 1971 | MR

[3] Smolyak S. A., On Optimal Recovery of Functions and Functionals from them, PhD, MSU, M., 1965 (in Russian)

[4] Micchelli C. A., Rivlin T. J., “A survey of optimal recovery”, Optimal Estimation in Approximation Theory, eds. C. A. Micchelli, T. J. Rivlin, Plenum Press, N. Y., 1977, 1–54 | MR

[5] Melkman A. A., Micchelli C. A., “Optimal estimation of linear operators in Hilbert spaces from inaccurate data”, SIAM Journal on Numerical Analysis, 16:1 (1979), 87–105 | DOI | MR | Zbl

[6] Micchelli C. A., Rivlin T. J., “Lectures on Optimal Recovery”, Numerical Analysis Lancaster, Lecture Notes in Mathematics, 1129, ed. Turner P. R., Springer-Verlag, Berlin, 1985, 21–93 | DOI | MR

[7] Traub J. F., Woźniakowski H., A General Theory of Optimal Algorithms, Academic Press, N. Y., 1980 | MR | Zbl

[8] Magaril-Il'yaev G. G., Osipenko K. Yu., “Optimal Recovery of Functions and Their Derivatives from Inaccurate Information about the Spectrum and Inequalities for Derivatives”, Functional Analysis and Its Applications, 37:3 (2003), 203–214 | DOI | DOI | MR | Zbl

[9] Magaril-Il'yaev G. G., Osipenko K. Yu., “Optimal Recovery of the Solution of the Heat Equation from Inaccurate Data”, Sbornik: Mathematics, 200:5 (2009), 665–682 | DOI | DOI | MR | Zbl

[10] Magaril-Il'yaev G. G., Osipenko K. Yu., “On Optimal Harmonic Synthesis from Inaccurate Spectral Data”, Functional Analysis and Its Applications, 44:3 (2010), 223–225 | DOI | DOI | MR | Zbl

[11] Magaril-Il'yaev G. G., Sivkova E. O., “Optimal recovery of the semi-group operators from inaccurate data”, Eurasian Math. J., 10:4 (2019), 75–84 | DOI | MR | Zbl

[12] Abramova E. V., Magaril-Il'yaev G. G., Sivkova E. O., “Best Recovery of the Solution of the Dirichlet Problem in a Half-Space from Inaccurate Data”, Computational Mathematics and Mathematical Physics, 60:10 (2020), 1656–1665 | DOI | DOI | MR | Zbl