@article{VMJ_2023_25_2_a1,
author = {B. A. Ashabokov and A. Kh. Khibiev and M. H. Shhanukov-Lafishev},
title = {A locally one-dimensional scheme for the distribution functions equation by ice particles masses, considering the interaction of droplets and crystals},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {14--24},
year = {2023},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a1/}
}
TY - JOUR AU - B. A. Ashabokov AU - A. Kh. Khibiev AU - M. H. Shhanukov-Lafishev TI - A locally one-dimensional scheme for the distribution functions equation by ice particles masses, considering the interaction of droplets and crystals JO - Vladikavkazskij matematičeskij žurnal PY - 2023 SP - 14 EP - 24 VL - 25 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a1/ LA - ru ID - VMJ_2023_25_2_a1 ER -
%0 Journal Article %A B. A. Ashabokov %A A. Kh. Khibiev %A M. H. Shhanukov-Lafishev %T A locally one-dimensional scheme for the distribution functions equation by ice particles masses, considering the interaction of droplets and crystals %J Vladikavkazskij matematičeskij žurnal %D 2023 %P 14-24 %V 25 %N 2 %U http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a1/ %G ru %F VMJ_2023_25_2_a1
B. A. Ashabokov; A. Kh. Khibiev; M. H. Shhanukov-Lafishev. A locally one-dimensional scheme for the distribution functions equation by ice particles masses, considering the interaction of droplets and crystals. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 2, pp. 14-24. http://geodesic.mathdoc.fr/item/VMJ_2023_25_2_a1/
[1] Ashabokov, B. A., Fedchenko, L. M., Shapovalov, A. V. and Shapovalov, V. A., Physics of Clouds and Active Effects on them, Pechatnyy dvor, Nalchik, 2017, 240 pp. (in Russian)
[2] Pastushkov, R. S., “The Model of Convective Cloud Modification with Ice-Forming Aerosols. Present-Day Status and Perspective”, Proceedings of the Main Geophysical Observatory, 2016, no. 582, 128–157 (in Russian)
[3] Kogan, E. L., Mazin, I. P., Sergeev, B. N. and Khvorost'yanov, V. N., Numerical Modeling of Clouds, Gidrometeoizdat, M., 1984, 178 pp. (in Russian)
[4] Ashabokov, B. A. and Shapovalov, A. V., Convective Clouds: Numerical Models and Simulation Results Under Natural Conditions and Active Influence, Publishing House of KBSC RAS, Nalchik, 2008, 252 pp. (in Russian)
[5] Samarskiy, A. A., Theory of Difference Schemes, Nauka, M., 1977, 656 pp. (in Russian)
[6] Alikhanov A. A., “On the stability and convergence of nonlocal difference schemes”, Diff. Equat., 46 (2010), 949–961 | DOI | MR | Zbl
[7] Ashabokov, B. A., Khibiev, A. Kh. and Shkhanukov-Lafishev, M. Kh., “A Locally One-Dimensional Scheme for a General Parabolic Equation Describing Microphysical Processes In Convective Clouds”, Reports Adyghe (Circassian) International Academy of Sciences, 21:4 (2021), 45–55 | DOI
[8] Samarskiy, A. A. and Gulin, A. V., Stability of Difference Schemes, Nauka, M., 1973, 480 pp. (in Russian) | MR