@article{VMJ_2022_24_4_a8,
author = {K. S. Lapin},
title = {Total {Poisson} boundedness and total oscillability of solutions of systems of differential equations},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {105--116},
year = {2022},
volume = {24},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a8/}
}
TY - JOUR AU - K. S. Lapin TI - Total Poisson boundedness and total oscillability of solutions of systems of differential equations JO - Vladikavkazskij matematičeskij žurnal PY - 2022 SP - 105 EP - 116 VL - 24 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a8/ LA - ru ID - VMJ_2022_24_4_a8 ER -
K. S. Lapin. Total Poisson boundedness and total oscillability of solutions of systems of differential equations. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 4, pp. 105-116. http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a8/
[1] Chazy Z., “Sur l'allure finale du mouvement dans le probléme des trois corps quand le temps croit indefiniment”, Annales de l'Ecole Norm. Sup. $3^{\rm e}$ser., Ser. 39, 1922, 29–130 | DOI | MR
[2] Sitnikov K. A., “Suschestvovanie ostsilliruyuschikh dvizhenii v zadache trekh tel”, Dokl. AN SSSR, 133:2 (1960), 303–306
[3] Leontovich A. M., “O suschestvovanii ostsilliruyuschikh traektorii v odnoi billiardnoi zadache”, Dokl. AN SSSR, 145:3 (1962), 523–526
[4] Alekseev V. M., “Kvazisluchainye dinamicheskie sistemy. II”, Mat. sb., 77 (119):4 (1968), 545–601
[5] Pustylnikov L. D., “Suschestvovanie mnozhestva polozhitelnoi mery ostsilliruyuschikh dvizhenii v odnoi zadache dinamiki”, Dokl. AN SSSR, 1972, no. 2(202), 287–289
[6] Pustylnikov L. D., “O strogom obosnovanii vozmozhnosti neogranichennogo rosta energii chastits v odnoi zadache yadernoi fiziki”, Dokl. AN SSSR, 1985, no. 3(283), 550–553
[7] Pustylnikov L. D., “Novyi mekhanizm uskoreniya chastits i relyativistskii analog modeli Fermi — Ulama”, Teor. i mat. fizika, 77:1 (1988), 154–160
[8] Pustylnikov L. D., “Modeli Puankare, strogoe obosnovanie vtorogo nachala termodinamiki iz mekhaniki i mekhanizm uskoreniya Fermi”, Uspekhi mat. nauk, 50:1(301) (1995), 146–183
[9] Pustylnikov L. D., Deryabin M. V., “Chernye dyry i obobschennye relyativistskie billiardy”, Preprinty IPM im. M. V. Keldysha, 2013, 54, 36 pp.
[10] Lapin K. S., “Ravnomernaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Dif. uravneniya, 54:1 (2018), 40–50 | DOI
[11] Iosidzava T., “Funktsiya Lyapunova i ogranichennost reshenii”, Per. B. P. Demidovicha, Matematika, 5, 1965, 95–127
[12] Lapin K. S., “Vektor-funktsii Lyapunova, kanonicheskie oblasti Krasnoselskogo i suschestvovanie ogranichennykh po Puassonu reshenii”, Dif. uravneniya, 56:10 (2020), 1304–1309 | DOI | MR
[13] Lapin K. S., “Vektor-funktsii Lyapunova, vrascheniya vektornykh polei, napravlyayuschie funktsii i suschestvovanie ogranichennykh po Puassonu reshenii”, Dif. uravneniya, 57:3 (2021), 306–312 | DOI
[14] Rumyantsev V. V., Oziraner A. S., Ustoichivost i stabilizatsiya dvizheniya otnositelno chasti peremennykh, Nauka, M., 1987, 253 pp. | MR
[15] Lapin K. S., “Chastichnaya totalnaya ogranichennost reshenii sistem differentsialnykh uravnenii s chastichno kontroliruemymi nachalnymi usloviyami”, Mat. zametki, 99:2 (2016), 239–247 | DOI
[16] Miki K., Masamichi A., Shoichi S., “On the partial total stability and partially total boundednes of a system of ordinary differential equations”, Res. Rept. Akita Tech. Coll., 20 (1985), 105–109
[17] Lapin K. S., “Totalnaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Mat. zametki, 104:2 (2018), 243–254 | DOI
[18] Matrosov V. M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001, 373 pp.