Total Poisson boundedness and total oscillability of solutions of systems of differential equations
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 4, pp. 105-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the works of the author, the study of a special form of boundedness of solutions of systems of differential equations, namely, their Poisson boundedness, has started. The concept of Poisson boundedness of a solution generalizes the classical concept of boundedness of a solution and means that there is a ball in the phase space and there is a countable system of disjoint intervals on the time semiaxis such that the sequence of right ends of intervals tends to plus infinity and the solution for all values of time from these intervals is contained in the ball. Further, in the author's papers, on the basis of methods of Lyapunov functions, Lyapunov vector functions, and higher-order derivatives of Lyapunov functions, sufficient conditions for various types of Poisson boundedness of all solutions were obtained. In particular, sufficient conditions were obtained for total Poisson boundedness (Poisson boundedness under small perturbations), partial total Poisson boundedness, and also partial total Poisson boundedness of solutions with partially controlled initial conditions. In this paper, we obtaine an asymptotic or, in other words, final characterization of the concept of Poisson boundedness of a solution, which made it possible to establish a connection between the concept of a Poisson bounded solution and the concept of an oscillating solution. Further, the concepts of total oscillating of solutions, partial total oscillating of solutions, and partial total oscillating of solutions with partially controlled initial conditions are introduced. Based on the above final characterization of the concept of Poisson boundedness of a solution, and also on the basis of the method of Lyapunov vector functions with comparison systems, we obtain sufficient conditions for total oscillating, partial total oscillating, and partial total oscillating of solutions with partially controlled initial conditions. As a consequence, sufficient conditions for the above types of total oscillating of solutions are obtained in terms of Lyapunov functions.
@article{VMJ_2022_24_4_a8,
     author = {K. S. Lapin},
     title = {Total {Poisson} boundedness and total oscillability of solutions of systems of differential equations},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {105--116},
     year = {2022},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a8/}
}
TY  - JOUR
AU  - K. S. Lapin
TI  - Total Poisson boundedness and total oscillability of solutions of systems of differential equations
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 105
EP  - 116
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a8/
LA  - ru
ID  - VMJ_2022_24_4_a8
ER  - 
%0 Journal Article
%A K. S. Lapin
%T Total Poisson boundedness and total oscillability of solutions of systems of differential equations
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 105-116
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a8/
%G ru
%F VMJ_2022_24_4_a8
K. S. Lapin. Total Poisson boundedness and total oscillability of solutions of systems of differential equations. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 4, pp. 105-116. http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a8/

[1] Chazy Z., “Sur l'allure finale du mouvement dans le probléme des trois corps quand le temps croit indefiniment”, Annales de l'Ecole Norm. Sup. $3^{\rm e}$ser., Ser. 39, 1922, 29–130 | DOI | MR

[2] Sitnikov K. A., “Suschestvovanie ostsilliruyuschikh dvizhenii v zadache trekh tel”, Dokl. AN SSSR, 133:2 (1960), 303–306

[3] Leontovich A. M., “O suschestvovanii ostsilliruyuschikh traektorii v odnoi billiardnoi zadache”, Dokl. AN SSSR, 145:3 (1962), 523–526

[4] Alekseev V. M., “Kvazisluchainye dinamicheskie sistemy. II”, Mat. sb., 77 (119):4 (1968), 545–601

[5] Pustylnikov L. D., “Suschestvovanie mnozhestva polozhitelnoi mery ostsilliruyuschikh dvizhenii v odnoi zadache dinamiki”, Dokl. AN SSSR, 1972, no. 2(202), 287–289

[6] Pustylnikov L. D., “O strogom obosnovanii vozmozhnosti neogranichennogo rosta energii chastits v odnoi zadache yadernoi fiziki”, Dokl. AN SSSR, 1985, no. 3(283), 550–553

[7] Pustylnikov L. D., “Novyi mekhanizm uskoreniya chastits i relyativistskii analog modeli Fermi — Ulama”, Teor. i mat. fizika, 77:1 (1988), 154–160

[8] Pustylnikov L. D., “Modeli Puankare, strogoe obosnovanie vtorogo nachala termodinamiki iz mekhaniki i mekhanizm uskoreniya Fermi”, Uspekhi mat. nauk, 50:1(301) (1995), 146–183

[9] Pustylnikov L. D., Deryabin M. V., “Chernye dyry i obobschennye relyativistskie billiardy”, Preprinty IPM im. M. V. Keldysha, 2013, 54, 36 pp.

[10] Lapin K. S., “Ravnomernaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Dif. uravneniya, 54:1 (2018), 40–50 | DOI

[11] Iosidzava T., “Funktsiya Lyapunova i ogranichennost reshenii”, Per. B. P. Demidovicha, Matematika, 5, 1965, 95–127

[12] Lapin K. S., “Vektor-funktsii Lyapunova, kanonicheskie oblasti Krasnoselskogo i suschestvovanie ogranichennykh po Puassonu reshenii”, Dif. uravneniya, 56:10 (2020), 1304–1309 | DOI | MR

[13] Lapin K. S., “Vektor-funktsii Lyapunova, vrascheniya vektornykh polei, napravlyayuschie funktsii i suschestvovanie ogranichennykh po Puassonu reshenii”, Dif. uravneniya, 57:3 (2021), 306–312 | DOI

[14] Rumyantsev V. V., Oziraner A. S., Ustoichivost i stabilizatsiya dvizheniya otnositelno chasti peremennykh, Nauka, M., 1987, 253 pp. | MR

[15] Lapin K. S., “Chastichnaya totalnaya ogranichennost reshenii sistem differentsialnykh uravnenii s chastichno kontroliruemymi nachalnymi usloviyami”, Mat. zametki, 99:2 (2016), 239–247 | DOI

[16] Miki K., Masamichi A., Shoichi S., “On the partial total stability and partially total boundednes of a system of ordinary differential equations”, Res. Rept. Akita Tech. Coll., 20 (1985), 105–109

[17] Lapin K. S., “Totalnaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Mat. zametki, 104:2 (2018), 243–254 | DOI

[18] Matrosov V. M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001, 373 pp.