Spectral properties of self-adjoint partially integral operators with non-degenerate kernels
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 4, pp. 91-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider linear bounded self-adjoint integral operators $T_1$ and $T_2$ in the Hilbert space $L_2([a,b]\times[c,d])$, the so-called partially integral operators. The partially integral operator $T_1$ acts on the functions $f(x,y)$ with respect to the first argument and performs a certain integration with respect to the argument $x$, and the partially integral operator $T_2$ acts on the functions $f(x,y)$ with respect to the second argument and performs some integration over the argument $y$. Both operators are bounded, however both are not compact operators. However, the operator $T_1T_2$ is compact and $T_1T_2=T_2T_1$. Partially integral operators arise in various areas of mechanics, the theory of integro-differential equations, and the theory of Schrodinger operators. In this paper, the spectral properties of linear bounded self-adjoint partially integral operators $T_1$, $T_2$ and $T_1+T_2$ with nondegenerate kernels are investigated. A formula is obtained for describing the essential spectra of the partially integral operators $T_1$ and $T_2$. It is shown that the operators $T_1$ and $T_2$ have no discrete spectrum. A theorem on the structure of the essential spectrum of the partially integral operator $T_1+T_2$ is proved. The problem of the existence of a countable number of eigenvalues in the discrete spectrum of the partially integral operator $T_1+T_2$ is studied.
@article{VMJ_2022_24_4_a7,
     author = {D. J. Kulturayev and Yu. Kh. Eshkabilov},
     title = {Spectral properties of self-adjoint partially integral operators with non-degenerate kernels},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {91--104},
     year = {2022},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a7/}
}
TY  - JOUR
AU  - D. J. Kulturayev
AU  - Yu. Kh. Eshkabilov
TI  - Spectral properties of self-adjoint partially integral operators with non-degenerate kernels
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 91
EP  - 104
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a7/
LA  - ru
ID  - VMJ_2022_24_4_a7
ER  - 
%0 Journal Article
%A D. J. Kulturayev
%A Yu. Kh. Eshkabilov
%T Spectral properties of self-adjoint partially integral operators with non-degenerate kernels
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 91-104
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a7/
%G ru
%F VMJ_2022_24_4_a7
D. J. Kulturayev; Yu. Kh. Eshkabilov. Spectral properties of self-adjoint partially integral operators with non-degenerate kernels. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 4, pp. 91-104. http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a7/

[1] Vekua I. N., Novye metody resheniya ellipticheskikh uravnenii, Nauka, M., 1948, 296 pp. | MR

[2] Aleksandrov V. M., Kovalenko E. V., “On a class of integral equations in mixed problems of continum mechanics”, Soviet Phys. Dokl., 25:2 (1980), 354–356 | MR

[3] Aleksandrov V. M., Kovalenko E. V., “Contact interaction of bodies with coatings in the presense of abrasion”, Soviet Phys. Dokl., 29:4 (1984), 340–342

[4] Manzhirov A. V., “On a method for solving two-dimensional integral equation for exially symmetric contact problem for bodies with complex layer rheology”, J. Appl. Math. Mech., 49:6 (1985), 777–782 | DOI | MR

[5] Gursa E., Kurs matematicheskogo analiza, ch. 2, v. 3, M.–L., 1934, 318 pp.

[6] Myuntts G., Integralnye uravneniya, v. 1, L.–M., 1934, 330 pp.

[7] Eshkabilov Yu. Kh., “Ob odnom diskretnom «trekhchastichnom» operatore Shredingera v modeli Khabbarda”, Teoret. i mat. fiz., 149:2 (2006), 228–243 | DOI

[8] Albeverio S., Lakaev S. N., Muminov Z. I., “On the number of eigenvalues of a model operator associated to a system of three-particles on lattices”, Russ. J. Math. Phys., 14:4 (2007), 377–387 | DOI | MR

[9] Rasulov T. Kh., “Asimptotika diskretnogo spektra odnogo modelnogo operatora, assotsiirovannogo s sistemoi trekh chastits na reshetke”, Teoret. i mat. fiz., 163:1 (2010), 34–44 | DOI

[10] Appell J. M., Kalitvin A. S., Nashed M. Z., “On some partial integral equations arising in the mechanics of solids”, Z. Angew. Math. Mech., 79:10 (1999), 703–713 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[11] Kalitvin A. S., Lineinye operatory s chastnymi integralami, TsChKI, Voronezh, 2000, 252 pp.

[12] Appell J. M., Kalitvin A. S., Zabrejko P. P., Partial Integral Operators and Integro-Differential Equations, N. Y., 2000, 578 pp. | DOI | MR

[13] Kalitvin A. S., “O spektre lineinykh operatorov s chastnymi integralami i polozhitelnymi yadrami”, Operatory i ikh prilozheniya, Mezhvuz. sb. nauch. tr., L., 1988, 43–50

[14] Kalitvin A. S., Zabrejko P. P., “On the theory of partial integral operators”, J. Integral Equ. Appl., 3:3 (1991), 351–382 | DOI | MR

[15] Kalitvin A. S., Kalitvin V. A., “Lineinye operatory i uravneniya s chastnymi integralami”, Sovrem. matem. Fundam. naprvleniya, 65, no. 3, 2019, 390–433 | DOI

[16] Eshkabilov Yu. Kh., “O spektre tenzornoi summy kompaktnykh operatorov”, Uzbek. mat. zhurn., 2005, no. 3, 104–112

[17] Eshkabilov Yu. Kh., “Chastichno integralnyi operator s ogranichennym yadrom”, Mat. tr., 11:1 (2008), 192–207 | MR

[18] Eshkabilov Yu. Kh., “Suschestvennyi i diskretnyi spektry chastichno integralnykh operatorov”, Mat. tr., 11:2 (2008), 187–203

[19] Eshkabilov Yu. Kh., “O diskretnom spektre chastichno integralnykh operatorov”, Mat. tr., 15:2 (2012), 194–203

[20] Arzikulov G. P., Eshkabilov Yu. Kh., “O suschestvennom i diskretnom spektrakh odnogo chastichno integralnogo operatora tipa Fredgolma”, Mat. tr., 17:2 (2014), 23–40

[21] Arzikulov G. P., Eshkabilov Yu. Kh., “On the spectra of partial integral operators”, Uzbek Math. J., 2015, no. 2, 148–159 | MR

[22] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977, 412 pp. | MR

[23] Pankrashkin K., Introduction to the Spectral Theory, Orsay, 2014 | MR

[24] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984, 750 pp. | MR

[25] Eshkabilov Yu. Kh., “O beskonechnosti diskretnogo spektra operatorov v modeli Fridrikhsa”, Mat. tr., 14:1 (2011), 195–211