Spectral properties of self-adjoint partially integral operators with non-degenerate kernels
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 4, pp. 91-104

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider linear bounded self-adjoint integral operators $T_1$ and $T_2$ in the Hilbert space $L_2([a,b]\times[c,d])$, the so-called partially integral operators. The partially integral operator $T_1$ acts on the functions $f(x,y)$ with respect to the first argument and performs a certain integration with respect to the argument $x$, and the partially integral operator $T_2$ acts on the functions $f(x,y)$ with respect to the second argument and performs some integration over the argument $y$. Both operators are bounded, however both are not compact operators. However, the operator $T_1T_2$ is compact and $T_1T_2=T_2T_1$. Partially integral operators arise in various areas of mechanics, the theory of integro-differential equations, and the theory of Schrodinger operators. In this paper, the spectral properties of linear bounded self-adjoint partially integral operators $T_1$, $T_2$ and $T_1+T_2$ with nondegenerate kernels are investigated. A formula is obtained for describing the essential spectra of the partially integral operators $T_1$ and $T_2$. It is shown that the operators $T_1$ and $T_2$ have no discrete spectrum. A theorem on the structure of the essential spectrum of the partially integral operator $T_1+T_2$ is proved. The problem of the existence of a countable number of eigenvalues in the discrete spectrum of the partially integral operator $T_1+T_2$ is studied.
@article{VMJ_2022_24_4_a7,
     author = {D. J. Kulturayev and Yu. Kh. Eshkabilov},
     title = {Spectral properties of self-adjoint partially integral operators with non-degenerate kernels},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {91--104},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a7/}
}
TY  - JOUR
AU  - D. J. Kulturayev
AU  - Yu. Kh. Eshkabilov
TI  - Spectral properties of self-adjoint partially integral operators with non-degenerate kernels
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 91
EP  - 104
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a7/
LA  - ru
ID  - VMJ_2022_24_4_a7
ER  - 
%0 Journal Article
%A D. J. Kulturayev
%A Yu. Kh. Eshkabilov
%T Spectral properties of self-adjoint partially integral operators with non-degenerate kernels
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 91-104
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a7/
%G ru
%F VMJ_2022_24_4_a7
D. J. Kulturayev; Yu. Kh. Eshkabilov. Spectral properties of self-adjoint partially integral operators with non-degenerate kernels. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 4, pp. 91-104. http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a7/