On Poletsky-type modulus inequalities for some classes of mappings
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 4, pp. 58-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well-known that the theory of mappings with bounded distortion was laid by Yu. G. Reshetnyak in 60-th of the last century [1]. In papers [2, 3], there was introduced the two-index scale of mappings with weighted bounded $(q, p)$-distortion. This scale of mappings includes, in particular, mappings with bounded distortion mentioned above (under $q=p=n$ and the trivial weight function). In paper [4], for the two-index scale of mappings with weighted bounded $(q, p)$-distortion, the Poletsky-type modulus inequality was proved under minimal regularity; many examples of mappings were given to which the results of [4] can be applied. In this paper we show how to apply results of [4] to one such class. Another goal of this paper is to exhibit a new class of mappings in which Poletsky-type modulus inequalities is valid. To this end, for $n=2$, we extend the validity of the assertions in [4] to the limiting exponents of summability: $1. This generalization contains, as a special case, the results of recently published papers. As a consequence of our results, we also obtain estimates for the change in capacitу of condensers.
@article{VMJ_2022_24_4_a4,
     author = {S. K. Vodopyanov},
     title = {On {Poletsky-type} modulus inequalities for some classes of mappings},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {58--69},
     year = {2022},
     volume = {24},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a4/}
}
TY  - JOUR
AU  - S. K. Vodopyanov
TI  - On Poletsky-type modulus inequalities for some classes of mappings
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 58
EP  - 69
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a4/
LA  - en
ID  - VMJ_2022_24_4_a4
ER  - 
%0 Journal Article
%A S. K. Vodopyanov
%T On Poletsky-type modulus inequalities for some classes of mappings
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 58-69
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a4/
%G en
%F VMJ_2022_24_4_a4
S. K. Vodopyanov. On Poletsky-type modulus inequalities for some classes of mappings. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 4, pp. 58-69. http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a4/

[1] Reshetnyak Yu. G., Space Mappings with Bounded Distortion, Amer. Math. Soc., Providence, 1989 | MR

[2] Vodopyanov S. K., “Basics of the Quasiconformal Analysis of a Two-Index Scale of Space Mappings”, Siberian Mathematical Journal, 59:5 (2018), 805–834 | DOI | MR

[3] Vodopyanov S. K., “Differentiability of Mappings of the Sobolev Space $W^1_{n-1}$ with Conditions on the Distortion Function”, Siberian Mathematical Journal, 59:6 (2018), 983–1005 | DOI | MR

[4] Vodopyanov S. K., “Moduli Inequalities for $W^1_{n-1,\mathrm{loc}}$-Mappings with Weighted Bounded $(q, p)$-Distortion”, Complex Variables and Elliptic Equations, 66:6–7 (2021), 1037–1072 | DOI | MR

[5] Väisälä J., Lectures on $n$-Dimensional Quasiconformal Mappings, Lecture Notes in Mathematics, 229, Springer, Berlin-Heidelberg-New York, 1971 | DOI | MR

[6] Fuglede B., “Extremal Length and Functional Completion”, Acta Mathematica, 98 (1957), 171–219 | DOI | MR

[7] Vodopyanov S. K., “The Regularity of Inverses to Sobolev Mappings and the Theory of $Q_{q,p}$-Homeomorphisms”, Siberian Mathematical Journal, 61:6 (2020), 1002–1038 | DOI | MR

[8] Vodopyanov S. K. and Tomilov A. O., “Functional and Analytic Properties of a Class of Mappings in Quasi-Conformal Analysis”, Izvestiya: Mathematics, 85:5 (2021), 883–931 | DOI | MR

[9] Vodopyanov S. K., “Regularity of Mappings Inverse to Sobolev Mappings”, Sbornik: Mathematics, 203:10 (2012), 1383–1410 | DOI | MR

[10] Hencl S. and Koskela P., “Regularity of the Inverse of a Planar Sobolev Homeomorphism”, Archive for Rational Mechanics and Analysis, 180 (2006), 75–95 | DOI | MR

[11] Rickman S., Quasiregular mappings, Springer-Verlag, Berlin, 1993, 213 pp. | MR

[12] Poletsky E. A., “The Modulus Method for Nonhomeomorphic Quasiconformal Mappings”, Mathematics of the USSR-Sbornik, 12:2 (1970), 260–270 | DOI

[13] Salimov R. R., Sevost'yanov E. A. and Targonskii V. A., On Modulus Inequality of the Order $p$ for the Inner Dilatation, 2022, arXiv: 2204.07870