Scale-dependent deformation model of a layered rectangle
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 4, pp. 48-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of deformation of a layered rectangle, the lower side of which is rigidly clamped, a distributed normal load acts on the upper side, and the sides are in conditions of sliding termination. One-parameter gradient theory of elasticity is used to take into account the scale effects. The boundary conditions on the side faces allow the use of the method of separation of variables. The displacements and mechanical loads were decomposed into Fourier series. To find the harmonics of displacements, we have a system of two differential equations of the fourth order. The solution of the system of differential equations is based on the introduction of the elastic potential of displacements. The unknown integration constants are found by satisfying the boundary conditions and the conjugation conditions written in the displacement harmonics. Based on specific examples, the calculations of the horizontal and vertical distribution of displacements, couple and total stresses of a layered rectangle are carried out. The difference between the distributions of displacements and stresses found on the basis of solutions to the problem in the classical formulation and in the gradient formulation is shown. It was found that the total stresses experience a small jump on the conjugation line, due to the fact that, according to the gradient theory of elasticity, not the total stresses, but the components of the load vectors, should be continuous on the conjugation line. A significant influence of an increase in the scale parameter on changes in the values of displacements, total and couple stresses was revealed.
@article{VMJ_2022_24_4_a3,
     author = {A. O. Vatulyan and S. A. Nesterov},
     title = {Scale-dependent deformation model of a layered rectangle},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {48--57},
     year = {2022},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a3/}
}
TY  - JOUR
AU  - A. O. Vatulyan
AU  - S. A. Nesterov
TI  - Scale-dependent deformation model of a layered rectangle
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 48
EP  - 57
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a3/
LA  - ru
ID  - VMJ_2022_24_4_a3
ER  - 
%0 Journal Article
%A A. O. Vatulyan
%A S. A. Nesterov
%T Scale-dependent deformation model of a layered rectangle
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 48-57
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a3/
%G ru
%F VMJ_2022_24_4_a3
A. O. Vatulyan; S. A. Nesterov. Scale-dependent deformation model of a layered rectangle. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 4, pp. 48-57. http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a3/

[1] Aifantis E. C., “Gradient Effects at the Macro, Micro and Nano Scales”, Journal of the Mechanical Behavior of Materials, 1994, no. 5, 335–353 | DOI

[2] Toupin R. A., “Elastic Materials with Couple Stresses”, Archive for Rational Mechanics and Analysis, 11 (1962), 385–414 | DOI | MR

[3] Mindlin R. D., “Micro-Structure in Linear Elasticity”, Archive for Rational Mechanics and Analysis, 16 (1964), 51–78 | DOI | MR

[4] Ru C. Q. and Aifantis E. C., “A Simple Approach to Solve Boundary Value Problems in Gradient Elasticity”, Acta Mechanica, 101 (1993), 59–68 | DOI | MR

[5] Papargyri-Beskou S. and Tsinopoulos S., “Lame's Strain Potential Method for Plane Gradient Elasticity Problems”, Archive of Applied Mechanics, 85:9–10 (2015), 1399–1419 | DOI

[6] Charalambopoulos A., Tsinopoulos S. V. and Polyzos D., “Plane Strain Gradient Elastic Rectangle in Bending”, Archive of Applied Mechanics, 2020 | DOI

[7] Solyaev Y. O. and Lurie S. A., “Trefftz Collocation Method for Two-Dimensional Strain Gradient Elasticity”, International Journal for Numerical Methods in Engineering, 2020 | DOI | MR

[8] Li A., Zhou S. and Wang B., “A Size-Dependent Bilayered Microbeam Model Based on Strain Gradient Elasticity Theory”, Composite Structures, 108 (2014), 259–266 | DOI

[9] Guangyang F., Shenjuie Z., Lu Q., “The Size-Dependent Static Bending of a Partially Covered Laminated Microbeam”, International Journal of Mechanical Sciences, 152 (2019), 411–419 | DOI

[10] Lurie S. A., Solyaev Yu. O., Rabinsky L. N., Kondratova Yu. N. and Volov M. I., “Simulation of the Stress-Strain State of thin Composite Coating Based on Solutions of the Plane Problem of Strain-Gradient Elasticity for Layer”, Vestnik PNIPU. Mekhanika — PNRPU Mechanics Bulletin, 2013, no. 1, 161–181

[11] Vatulyan A. O. and Nesterov S. A., “On the Deformation of a Composite Rod in the Framework of Gradient Thermoelasticity”, Materials Physics Mechanics, 46 (2020), 27–41 | DOI | MR

[12] Vatulyan A. O., Nesterov S. A. and Yurov V. O., “Solution of the Gradient Thermoelasticity Problem for a Cylinder with a Heat-Protected Coating”, Computational Continuum Mechanics, 14:3 (2021), 253–264 | DOI

[13] Vatulyan A. O., Nesterov S. A. and Yurov V. O., “Investigation of the Stress-Strain State of a Hollow Cylinder with a Coating Based on the Gradient Model of Thermoelasticity”, PNRPU Mechanics Bulletin, 2021, no. 4, 60–70 | DOI | MR

[14] Vatulyan A. O. and Nesterov S. A., “Solution of the Problem of Gradient Thermoelasticity for a Coated Strip”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 163, no. 2, 2021, 181–196 | DOI