@article{VMJ_2022_24_4_a3,
author = {A. O. Vatulyan and S. A. Nesterov},
title = {Scale-dependent deformation model of a layered rectangle},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {48--57},
year = {2022},
volume = {24},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a3/}
}
A. O. Vatulyan; S. A. Nesterov. Scale-dependent deformation model of a layered rectangle. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 4, pp. 48-57. http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a3/
[1] Aifantis E. C., “Gradient Effects at the Macro, Micro and Nano Scales”, Journal of the Mechanical Behavior of Materials, 1994, no. 5, 335–353 | DOI
[2] Toupin R. A., “Elastic Materials with Couple Stresses”, Archive for Rational Mechanics and Analysis, 11 (1962), 385–414 | DOI | MR
[3] Mindlin R. D., “Micro-Structure in Linear Elasticity”, Archive for Rational Mechanics and Analysis, 16 (1964), 51–78 | DOI | MR
[4] Ru C. Q. and Aifantis E. C., “A Simple Approach to Solve Boundary Value Problems in Gradient Elasticity”, Acta Mechanica, 101 (1993), 59–68 | DOI | MR
[5] Papargyri-Beskou S. and Tsinopoulos S., “Lame's Strain Potential Method for Plane Gradient Elasticity Problems”, Archive of Applied Mechanics, 85:9–10 (2015), 1399–1419 | DOI
[6] Charalambopoulos A., Tsinopoulos S. V. and Polyzos D., “Plane Strain Gradient Elastic Rectangle in Bending”, Archive of Applied Mechanics, 2020 | DOI
[7] Solyaev Y. O. and Lurie S. A., “Trefftz Collocation Method for Two-Dimensional Strain Gradient Elasticity”, International Journal for Numerical Methods in Engineering, 2020 | DOI | MR
[8] Li A., Zhou S. and Wang B., “A Size-Dependent Bilayered Microbeam Model Based on Strain Gradient Elasticity Theory”, Composite Structures, 108 (2014), 259–266 | DOI
[9] Guangyang F., Shenjuie Z., Lu Q., “The Size-Dependent Static Bending of a Partially Covered Laminated Microbeam”, International Journal of Mechanical Sciences, 152 (2019), 411–419 | DOI
[10] Lurie S. A., Solyaev Yu. O., Rabinsky L. N., Kondratova Yu. N. and Volov M. I., “Simulation of the Stress-Strain State of thin Composite Coating Based on Solutions of the Plane Problem of Strain-Gradient Elasticity for Layer”, Vestnik PNIPU. Mekhanika — PNRPU Mechanics Bulletin, 2013, no. 1, 161–181
[11] Vatulyan A. O. and Nesterov S. A., “On the Deformation of a Composite Rod in the Framework of Gradient Thermoelasticity”, Materials Physics Mechanics, 46 (2020), 27–41 | DOI | MR
[12] Vatulyan A. O., Nesterov S. A. and Yurov V. O., “Solution of the Gradient Thermoelasticity Problem for a Cylinder with a Heat-Protected Coating”, Computational Continuum Mechanics, 14:3 (2021), 253–264 | DOI
[13] Vatulyan A. O., Nesterov S. A. and Yurov V. O., “Investigation of the Stress-Strain State of a Hollow Cylinder with a Coating Based on the Gradient Model of Thermoelasticity”, PNRPU Mechanics Bulletin, 2021, no. 4, 60–70 | DOI | MR
[14] Vatulyan A. O. and Nesterov S. A., “Solution of the Problem of Gradient Thermoelasticity for a Coated Strip”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 163, no. 2, 2021, 181–196 | DOI