@article{VMJ_2022_24_4_a1,
author = {O. G. Avsyankin and G. A. Kamenskikh},
title = {On the algebra generated by {Volterra} integral operators with homogeneous kernels and continuous coefficients},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {19--29},
year = {2022},
volume = {24},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a1/}
}
TY - JOUR AU - O. G. Avsyankin AU - G. A. Kamenskikh TI - On the algebra generated by Volterra integral operators with homogeneous kernels and continuous coefficients JO - Vladikavkazskij matematičeskij žurnal PY - 2022 SP - 19 EP - 29 VL - 24 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a1/ LA - ru ID - VMJ_2022_24_4_a1 ER -
%0 Journal Article %A O. G. Avsyankin %A G. A. Kamenskikh %T On the algebra generated by Volterra integral operators with homogeneous kernels and continuous coefficients %J Vladikavkazskij matematičeskij žurnal %D 2022 %P 19-29 %V 24 %N 4 %U http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a1/ %G ru %F VMJ_2022_24_4_a1
O. G. Avsyankin; G. A. Kamenskikh. On the algebra generated by Volterra integral operators with homogeneous kernels and continuous coefficients. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 4, pp. 19-29. http://geodesic.mathdoc.fr/item/VMJ_2022_24_4_a1/
[1] Karapetiants N. and Samko S., Equations with Involutive Operators, Birkhäuser, Boston–Basel–Berlin, 2001, 427 pp. | MR
[2] Avsyankin O. G. and Karapetyants N. K., “On the Pseudospectra of Multidimensional Integral Operators with Homogeneous Kernels of Degree $-n$”, Siberian Mathematical Journal, 44:6 (2003), 935–950 | DOI | MR
[3] Avsyankin O. G., “On the $C^*$-Algebra Generated by Multidimensional Integral Operators with Homogeneous Kernels and Multiplicative Translations”, Doklady Mathematics, 77:2 (2008), 298–299 | DOI | MR
[4] Avsyankin O. G., “Volterra Type Integral Operators with Homogeneous Kernels in Weighted $L_p$-Spaces”, Russian Mathematics, 61:11 (2017), 1–9 | DOI | MR
[5] Avsyankin O. G., “Invertibility of Multidimensional Integral Operators with Bihomogeneous Kernels”, Mathematical Notes, 108:2 (2020), 277–281 | DOI | DOI | MR
[6] Avsyankin O. G., “On Integral Operators with Homogeneous Kernels and Trigonometric Coefficients”, Russian Mathematics, 65:4 (2021), 1–7 | DOI | DOI | MR
[7] Umarkhadzhiev S. M., “One-Sided Integral Operators with Homogeneous Kernels in Grand Lebesgue Spaces”, Vladikavkaz Mathematical Journal, 19:3 (2017), 70–82 (in Russian) | MR
[8] Mikhailov L. G., New Class of Singular Integral Equations and Its Application to Differential Equations with Singular Coefficients, Tr. Akad. Nauk Tadzhik. SSR, 1, Dushanbe, 1963, 183 pp. (in Russian) | MR
[9] Avsyankin O. G., Development of the Theory of Multidimensional Integral Operators with Homogeneous and Bihomogeneous Kernels, Dr. Science Thesis, South Federal University, Rostov-on-Don, 2009, 277 pp. (in Russian)
[10] Gelfand I. M., Raikov D. A. and Shilov G. E., Commutative Normed Rings, Fizmatgiz, M., 1960, 315 pp. (in Russian)