@article{VMJ_2022_24_3_a7,
author = {A. E. Pasenchuk and V. V. Seregina},
title = {On the spectrum of a {Toeplitz} operator in a countable normed space of smooth functions},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {96--107},
year = {2022},
volume = {24},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a7/}
}
TY - JOUR AU - A. E. Pasenchuk AU - V. V. Seregina TI - On the spectrum of a Toeplitz operator in a countable normed space of smooth functions JO - Vladikavkazskij matematičeskij žurnal PY - 2022 SP - 96 EP - 107 VL - 24 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a7/ LA - ru ID - VMJ_2022_24_3_a7 ER -
A. E. Pasenchuk; V. V. Seregina. On the spectrum of a Toeplitz operator in a countable normed space of smooth functions. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 96-107. http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a7/
[1] Gakhov F. D., Boundary Value Problems, Dover, N.Y., 1990, 561 pp.
[2] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971, 352 pp.
[3] Gokhberg I. Ts., Krupnik N. Ya., Vvedenie v teoriyu odnomernykh singulyarnykh integralnykh operatorov, Shtiintsa, Kishinev, 1973, 426 pp.
[4] Presdorf Z., Nekotorye klassy singulyarnykh uravnenii, Nauka, M., 1984, 750 pp.
[5] Soldatov A. P., Odnomernye singulyarnye operatory i kraevye zadachi teorii funktsii, Vyssh. shk., M., 1991, 210 pp.
[6] Zilberman B., “O singulyarnykh operatorakh v prostranstvakh beskonechno differentsiruemykh i obobschennykh funktsii”, Mat. issledovaniya, 6:3 (1971), 168–179
[7] Pasenchuk A. E., Diskretnye operatory tipa svertki v klassakh posledovatelnostei so stepennym kharakterom povedeniya na beskonechnosti, YuFU, Rostov n/D., 2013, 279 pp.