On the structure of nets over quadratic fields
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 87-95
Voir la notice de l'article provenant de la source Math-Net.Ru
The structure of nets over quadratic fields is studied. Let $K=\mathbb{Q} (\sqrt{d})$ be a quadratic field, $\mathfrak{D}$ the ring of integers of the quadratic field $K$. A set of additive subgroups $\sigma=(\sigma_{ij})$, $1\leq i,j\leq n$, of a field $K$ is called a net of order $n$ over $K$ if $\sigma_{ir} \sigma_{rj} \subseteq{\sigma_{ij}} $ for all values of the index $i$, $r$, $j$. A net $\sigma=(\sigma_{ij})$ is called irreducible if all additive subgroups $\sigma_{ij}$ are different from zero. A net $\sigma = (\sigma_{ij})$ is called a $D$-net if $1 \in\tau_{ii}$, $1\leq i\leq n$. Let $\sigma = (\sigma_{ij})$ be an irreducible $D$-net of order $n\geq 2$ over $K$, where $\sigma_{ij}$ are $\mathfrak{D}$-modules. We prove that, up to conjugation diagonal matrix, all $\sigma_{ij}$ are fractional ideals of a fixed intermediate subring $P$, $\mathfrak{D}\subseteq P \subseteq K$, and all diagonal rings coincide with $P$: $\sigma_{11}=\sigma_{22}=\ldots =\sigma_{nn}=P,$ where $\sigma_{ij}\subseteq P$ are integer ideals of the ring $P$ for any $i$, if $i>j$, then $P\subseteq\sigma_{ij}$. For any $i$, $j$ we have $\sigma_{1j}\subseteq\sigma_{ij}$.
@article{VMJ_2022_24_3_a6,
author = {S. S. Ikaev and V. A. Koibaev and A. O. Likhacheva},
title = {On the structure of nets over quadratic fields},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {87--95},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a6/}
}
TY - JOUR AU - S. S. Ikaev AU - V. A. Koibaev AU - A. O. Likhacheva TI - On the structure of nets over quadratic fields JO - Vladikavkazskij matematičeskij žurnal PY - 2022 SP - 87 EP - 95 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a6/ LA - ru ID - VMJ_2022_24_3_a6 ER -
S. S. Ikaev; V. A. Koibaev; A. O. Likhacheva. On the structure of nets over quadratic fields. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 87-95. http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a6/