@article{VMJ_2022_24_3_a5,
author = {L. F. Dzagoeva and A. F. Tedeev},
title = {Asymptotic behavior of the solution of doubly degenerate parabolic equations with inhomogeneous density},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {78--86},
year = {2022},
volume = {24},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a5/}
}
TY - JOUR AU - L. F. Dzagoeva AU - A. F. Tedeev TI - Asymptotic behavior of the solution of doubly degenerate parabolic equations with inhomogeneous density JO - Vladikavkazskij matematičeskij žurnal PY - 2022 SP - 78 EP - 86 VL - 24 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a5/ LA - en ID - VMJ_2022_24_3_a5 ER -
%0 Journal Article %A L. F. Dzagoeva %A A. F. Tedeev %T Asymptotic behavior of the solution of doubly degenerate parabolic equations with inhomogeneous density %J Vladikavkazskij matematičeskij žurnal %D 2022 %P 78-86 %V 24 %N 3 %U http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a5/ %G en %F VMJ_2022_24_3_a5
L. F. Dzagoeva; A. F. Tedeev. Asymptotic behavior of the solution of doubly degenerate parabolic equations with inhomogeneous density. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 78-86. http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a5/
[1] Kamin, S., Rosenau, P., “Non-Linear Diffusion in Finite Mass Medium”, Communications on Pure Applied Mathematics, 35:1 (1982), 113–127 | DOI
[2] Kamin, S., Rosenau, P., “Propagation of Thermal Waves in an Inhomogeneous Medium”, Communications on Pure and Applied Mathematics, 34:6 (1981), 831–852 | DOI
[3] Galaktionov, V. A., Kamin, S., Kersner, R., Vazquez, J. L., “Intermediate Asymptotics for Inhomogeneous Nonlinear Heat Conduction”, Journal of Mathematical Sciences, 120:3 (2004), 1277–1294 | DOI
[4] Guedda, M., Hihorst, D., Peletier, M. A., “Disappearing Interfaces in Nonlinear Diffusion”, Advances in Mathematical Sciences and Applications, 7 (1997), 695–710
[5] Reyes, G., Vazquez, J. L., “The Cauchy Problem for the Inhomogeneous Porous Medium Equation”, Networks and Heterogeneous Media, 1:2 (2006), 337–351 | DOI
[6] Reyes, G., Vazquez, J. L., “Long Time Behavior for the Inhomogeneous PME in a Medium with Slowly Decaying Density”, Communications on Pure and Applied Analysis, 8:2 (2009), 493–508 | DOI
[7] Kamin, S., Reyes, G., Vazquez, J. L., “Long Time Behavior for the Inhomogeneous PME in a Medium with Rapidly Decaying Density”, Discrete and Continuous Dynamical Systems, 26:2 (2010), 521–549 | DOI
[8] Kamin, S., Kersner, R., “Disappearance of Interfaces in Finite Time”, Meccanica, 28:2 (1993), 117–120 | DOI
[9] Tedeev, A. F., “Conditions for the Time Global Existence and Nonexistence of a Compact Support of Solutions to the Cauchy Problem for Quasilinear Parabolic Equations”, Siberian Mathematical Journal, 45:1 (2004), 155–164 | DOI
[10] Tedeev, A. F., “The Interface Blow-Up Phenomenon and Local Estimates for Doubly Degenerate Parabolic Equations”, Applicable Analysis, 86:6 (2007), 755–782 | DOI
[11] Martynenko, A. V., Tedeev, A. F., “On the Behaviour of Solutions to the Cauchy Problem for a Degenerate Parabolic Equation with Inhomogeneous Density And a Sources”, Computational Mathematics and Mathematical Physics, 48:7 (2008), 1145–1160 | DOI
[12] Andreucci, D., Cirmi, G. R., Leonardi, S., Tedeev, A. F., “Large Time Behavior of Solutions to the Neumann Problem for a Quasilinear Second Order Degenerate Parabolic Equation in Domains with Noncompact Boundary”, Journal of Differential Equations, 174:2 (2001), 253–288 | DOI
[13] Kalashnikov, A. S., “Some Problems of the Qualitative Theory of Non-Linear Degenerate SecondOrder Parabolic Equations”, Russian Mathematical Surveys, 42:2 (1987), 169–222 | DOI
[14] Caffarelli, L., Kohn, R., Nirenberg, L., “First Order Interpolation Inequalities with Weights”, Composito Mathematica, 53:3 (1984), 259–275
[15] Di Benedetto, E., Herrero, M. A., “On the Cauchy Problem and Initial Traces for a Degenerate Parabolic Equation”, Transactions of the American Mathematical Society, 314:1 (1989), 187–224 | DOI
[16] Andreucci, D., Tedeev, A. F., “Universal Bounds at the Blow-Up Time for Nonlinear Parabolic Equations”, Advances in Differential Equations, 10:1 (2005), 89–120
[17] Andreucci, D., Tedeev, A. F., “Optimal Decay Rate for Degenerate Parabolic Equations on Noncompact Manifolds”, Methods and Applications of Analysis, 22:4 (2015), 359–376 | DOI
[18] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'ceva, N. N., Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, R. I., 1968