Asymptotic behavior of the solution of doubly degenerate parabolic equations with inhomogeneous density
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 78-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the large time behaviour for solutions to the Cauchy problem for degenerate parabolic equations with inhomogeneous density. Under the suitable assumptions on the data of the problem and on the behaviour of the density at infinity we establish new sharp bound of solutions for a large time. One of the main tool of the proof is new weighted embedding result which is of independent interest. In addition, the proof of uniform estimates of the solution is carried out by modified version of the classical method of De-Giorgi–Ladyzhenskaya–Uraltseva–DiBenedetto. Similar results in the case of power-like density was obtained by one of the author [10]. The approach of this work can be applied for example when studying the qualitative properties of solutions to the Neumann problem for a doubly nonlinear parabolic equation with inhomogeneous density in domains with non-compact boundaries.
@article{VMJ_2022_24_3_a5,
     author = {L. F. Dzagoeva and A. F. Tedeev},
     title = {Asymptotic behavior of the solution of doubly degenerate parabolic equations with inhomogeneous density},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {78--86},
     year = {2022},
     volume = {24},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a5/}
}
TY  - JOUR
AU  - L. F. Dzagoeva
AU  - A. F. Tedeev
TI  - Asymptotic behavior of the solution of doubly degenerate parabolic equations with inhomogeneous density
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 78
EP  - 86
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a5/
LA  - en
ID  - VMJ_2022_24_3_a5
ER  - 
%0 Journal Article
%A L. F. Dzagoeva
%A A. F. Tedeev
%T Asymptotic behavior of the solution of doubly degenerate parabolic equations with inhomogeneous density
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 78-86
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a5/
%G en
%F VMJ_2022_24_3_a5
L. F. Dzagoeva; A. F. Tedeev. Asymptotic behavior of the solution of doubly degenerate parabolic equations with inhomogeneous density. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 78-86. http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a5/

[1] Kamin, S., Rosenau, P., “Non-Linear Diffusion in Finite Mass Medium”, Communications on Pure Applied Mathematics, 35:1 (1982), 113–127 | DOI

[2] Kamin, S., Rosenau, P., “Propagation of Thermal Waves in an Inhomogeneous Medium”, Communications on Pure and Applied Mathematics, 34:6 (1981), 831–852 | DOI

[3] Galaktionov, V. A., Kamin, S., Kersner, R., Vazquez, J. L., “Intermediate Asymptotics for Inhomogeneous Nonlinear Heat Conduction”, Journal of Mathematical Sciences, 120:3 (2004), 1277–1294 | DOI

[4] Guedda, M., Hihorst, D., Peletier, M. A., “Disappearing Interfaces in Nonlinear Diffusion”, Advances in Mathematical Sciences and Applications, 7 (1997), 695–710

[5] Reyes, G., Vazquez, J. L., “The Cauchy Problem for the Inhomogeneous Porous Medium Equation”, Networks and Heterogeneous Media, 1:2 (2006), 337–351 | DOI

[6] Reyes, G., Vazquez, J. L., “Long Time Behavior for the Inhomogeneous PME in a Medium with Slowly Decaying Density”, Communications on Pure and Applied Analysis, 8:2 (2009), 493–508 | DOI

[7] Kamin, S., Reyes, G., Vazquez, J. L., “Long Time Behavior for the Inhomogeneous PME in a Medium with Rapidly Decaying Density”, Discrete and Continuous Dynamical Systems, 26:2 (2010), 521–549 | DOI

[8] Kamin, S., Kersner, R., “Disappearance of Interfaces in Finite Time”, Meccanica, 28:2 (1993), 117–120 | DOI

[9] Tedeev, A. F., “Conditions for the Time Global Existence and Nonexistence of a Compact Support of Solutions to the Cauchy Problem for Quasilinear Parabolic Equations”, Siberian Mathematical Journal, 45:1 (2004), 155–164 | DOI

[10] Tedeev, A. F., “The Interface Blow-Up Phenomenon and Local Estimates for Doubly Degenerate Parabolic Equations”, Applicable Analysis, 86:6 (2007), 755–782 | DOI

[11] Martynenko, A. V., Tedeev, A. F., “On the Behaviour of Solutions to the Cauchy Problem for a Degenerate Parabolic Equation with Inhomogeneous Density And a Sources”, Computational Mathematics and Mathematical Physics, 48:7 (2008), 1145–1160 | DOI

[12] Andreucci, D., Cirmi, G. R., Leonardi, S., Tedeev, A. F., “Large Time Behavior of Solutions to the Neumann Problem for a Quasilinear Second Order Degenerate Parabolic Equation in Domains with Noncompact Boundary”, Journal of Differential Equations, 174:2 (2001), 253–288 | DOI

[13] Kalashnikov, A. S., “Some Problems of the Qualitative Theory of Non-Linear Degenerate SecondOrder Parabolic Equations”, Russian Mathematical Surveys, 42:2 (1987), 169–222 | DOI

[14] Caffarelli, L., Kohn, R., Nirenberg, L., “First Order Interpolation Inequalities with Weights”, Composito Mathematica, 53:3 (1984), 259–275

[15] Di Benedetto, E., Herrero, M. A., “On the Cauchy Problem and Initial Traces for a Degenerate Parabolic Equation”, Transactions of the American Mathematical Society, 314:1 (1989), 187–224 | DOI

[16] Andreucci, D., Tedeev, A. F., “Universal Bounds at the Blow-Up Time for Nonlinear Parabolic Equations”, Advances in Differential Equations, 10:1 (2005), 89–120

[17] Andreucci, D., Tedeev, A. F., “Optimal Decay Rate for Degenerate Parabolic Equations on Noncompact Manifolds”, Methods and Applications of Analysis, 22:4 (2015), 359–376 | DOI

[18] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'ceva, N. N., Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, R. I., 1968