On the theory of spaces of generalized Bessel potentials
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 62-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The purpose of the article is to introduce norms in the space of generalized Bessel potentials based on the weighted Dirichlet integrals. First, we define weighted Dirichlet integral and show that this integral can be represented using multidimensional generalised translation. Next, we demonstrate that this norm does not allow to define function spaces of arbitrary fractional order of smoothness. The potential theory originates from the theory of electrostatic and gravitational potentials and the Laplace, wave, Helmholtz, and Poisson equations. The famous Riesz potentials are known to be realizations of the real negative powers of the Laplace and wave operators. In the meantime, a lot of attention in the potential theory is given to the Bessel potential. Generalization in the article is achieved by considering the Laplace-Bessel operator which is constructed on the basis of the singular Bessel differential operator. The theory of singular differential equations containing the Bessel operator and the theory of the corresponding weighted function spaces belong to those mathematical areas, the theoretical and applied significance of which can hardly be overestimated.
@article{VMJ_2022_24_3_a4,
     author = {A. L. Dzhabrailov and E. L. Shishkina},
     title = {On the theory of spaces of generalized {Bessel} potentials},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {62--77},
     year = {2022},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a4/}
}
TY  - JOUR
AU  - A. L. Dzhabrailov
AU  - E. L. Shishkina
TI  - On the theory of spaces of generalized Bessel potentials
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 62
EP  - 77
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a4/
LA  - ru
ID  - VMJ_2022_24_3_a4
ER  - 
%0 Journal Article
%A A. L. Dzhabrailov
%A E. L. Shishkina
%T On the theory of spaces of generalized Bessel potentials
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 62-77
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a4/
%G ru
%F VMJ_2022_24_3_a4
A. L. Dzhabrailov; E. L. Shishkina. On the theory of spaces of generalized Bessel potentials. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 62-77. http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a4/

[1] Stein E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, N. J., 1970, 304 pp.

[2] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 456 pp.

[3] Lyakhov L. N., Polovinkina M. V., “Prostranstvo vesovykh potentsialov Besselya”, Differentsialnye uravneniya i dinamicheskie sistemy, Sb. statei, Tr. MIAN, 250, Nauka, MAIK «Nauka/Interperiodika», M., 2005, 192–197

[4] Lyakhov L. N., “Obraschenie $B$-potentsialov Rissa”, Dokl. AN SSSR, 321:3 (1991), 466–469

[5] Lyakhov L. N., “Ob odnom klasse gipersingulyarnykh integralov”, Dokl. AN SSSR, 315:2 (1990), 291–296

[6] Aronszajn N., Smith K. T., “Functional spaces and functional completion”, Ann. de l'Inst. Fourier, 6 (1956), 125–185

[7] Aronszajn N., Smith K. T., “Characterization of positive reproducing kernels. Applications to Green's functions”, Amer. J. Math., 79:3 (1957), 611–622 | DOI

[8] Aronszajn N., Smith K. T., “Theory of Bessel potentials. I”, Ann. de l'Inst. Fourier, 11 (1961), 385–475

[9] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka–Fizmatlit, M., 1997, 204 pp.

[10] Vatson G. N., Teoriya besselevykh funktsii, Izd-vo inostr. lit-ry, M., 1949, 728 pp.

[11] Shishkina E. L., Sitnik S. M., Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics, Acad. Press, Cambridge, 2020, 592 pp.

[12] Banach S., Saks S., “Sur la convergence forte dans les champs $L^p$”, Stud. Math., 2 (1930), 51–57

[13] Goldman M. L., “Konus perestanovok dlya obobschennykh besselevykh potentsialov”, Teoriya funktsii i nelineinye uravneniya v chastnykh proizvodnykh, Sb. statei, Tr. MIAN, 260, MAIK «Nauka/Interperiodika», M., 2008, 151–163

[14] Goldman M. L., “Perestanovochno-invariantnye obolochki obobschennykh potentsialov Besselya i Rissa”, Dokl. AN, 423:1 (2008), 14–18

[15] Ekincioglu I., Shishkina E. L., Keskin C., “Generalized Bessel potential and its application to non-homogeneous singular screened Poisson equation”, Integral Transforms and Special Functions, 32:12 (2021), 932–947 | DOI

[16] Dzhabrailov A., Luchko Y., Shishkina E., “Two forms of an inverse operator to the generalized Bessel potential”, Axioms, 10:3 (2021), 1–20 | DOI