On operators dominated by Kantorovich--Banach operators and L\'{e}vy operators in locally solid lattices
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 55-61

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear operator $T$ acting in a locally solid vector lattice $(E,\tau)$ is said to be: a Lebesgue operator, if $Tx_\alpha\stackrel{\tau}{\to}0$ for every net in $E$ satisfying $x_\alpha\downarrow 0$; a $KB$-operator, if, for every $\tau$-bounded increasing net $x_\alpha$ in $E_+$, there exists an $x\in E$ with $Tx_\alpha\stackrel{\tau}{\to}Tx$; a quasi $KB$-operator, if $T$ takes $\tau$-bounded increasing nets in $E_+$ to $\tau$-Cauchy ones; a Lévi operator, if, for every $\tau$-bounded increasing net $x_\alpha$ in $E_+$, there exists an $x\in E$ such that $Tx_\alpha\stackrel{o}{\to}Tx$; a quasi Levi operator, if $T$ takes $\tau$-bounded increasing nets in $E_+$ to $o$-Cauchy ones. The present article is devoted to the domination problem for the quasi $KB$-operators and the quasi Lévi operators in locally solid vector lattices. Moreover, some properties of Lebesgue operators, Lévi operators, and $KB$-operators are investigated. In particularly, it is proved that the vector space Lebesgue operators is a subalgebra of the algebra of all regular operators.
@article{VMJ_2022_24_3_a3,
     author = {S. G. Gorokhova and E. Yu. Emelyanov},
     title = {On operators dominated by {Kantorovich--Banach} operators and {L\'{e}vy} operators in locally solid lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {55--61},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a3/}
}
TY  - JOUR
AU  - S. G. Gorokhova
AU  - E. Yu. Emelyanov
TI  - On operators dominated by Kantorovich--Banach operators and L\'{e}vy operators in locally solid lattices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 55
EP  - 61
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a3/
LA  - ru
ID  - VMJ_2022_24_3_a3
ER  - 
%0 Journal Article
%A S. G. Gorokhova
%A E. Yu. Emelyanov
%T On operators dominated by Kantorovich--Banach operators and L\'{e}vy operators in locally solid lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 55-61
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a3/
%G ru
%F VMJ_2022_24_3_a3
S. G. Gorokhova; E. Yu. Emelyanov. On operators dominated by Kantorovich--Banach operators and L\'{e}vy operators in locally solid lattices. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 55-61. http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a3/