On operators dominated by Kantorovich--Banach operators and L\'{e}vy operators in locally solid lattices
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 55-61
Voir la notice de l'article provenant de la source Math-Net.Ru
A linear operator $T$ acting in a locally solid vector lattice $(E,\tau)$ is said to be: a Lebesgue operator, if $Tx_\alpha\stackrel{\tau}{\to}0$ for every net in $E$ satisfying $x_\alpha\downarrow 0$; a $KB$-operator, if, for every $\tau$-bounded increasing net $x_\alpha$ in $E_+$, there exists an $x\in E$ with $Tx_\alpha\stackrel{\tau}{\to}Tx$; a quasi $KB$-operator, if $T$ takes $\tau$-bounded increasing nets in $E_+$ to $\tau$-Cauchy ones; a Lévi operator, if, for every $\tau$-bounded increasing net $x_\alpha$ in $E_+$, there exists an $x\in E$ such that $Tx_\alpha\stackrel{o}{\to}Tx$; a quasi Levi operator, if $T$ takes $\tau$-bounded increasing nets in $E_+$ to $o$-Cauchy ones. The present article is devoted to the domination problem for the quasi $KB$-operators and the quasi Lévi operators in locally solid vector lattices. Moreover, some properties of Lebesgue operators, Lévi operators, and $KB$-operators are investigated. In particularly, it is proved that the vector space Lebesgue operators is a subalgebra of the algebra of all regular operators.
@article{VMJ_2022_24_3_a3,
author = {S. G. Gorokhova and E. Yu. Emelyanov},
title = {On operators dominated by {Kantorovich--Banach} operators and {L\'{e}vy} operators in locally solid lattices},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {55--61},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a3/}
}
TY - JOUR
AU - S. G. Gorokhova
AU - E. Yu. Emelyanov
TI - On operators dominated by Kantorovich--Banach operators and L\'{e}vy operators in locally solid lattices
JO - Vladikavkazskij matematičeskij žurnal
PY - 2022
SP - 55
EP - 61
VL - 24
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a3/
LA - ru
ID - VMJ_2022_24_3_a3
ER -
%0 Journal Article
%A S. G. Gorokhova
%A E. Yu. Emelyanov
%T On operators dominated by Kantorovich--Banach operators and L\'{e}vy operators in locally solid lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 55-61
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a3/
%G ru
%F VMJ_2022_24_3_a3
S. G. Gorokhova; E. Yu. Emelyanov. On operators dominated by Kantorovich--Banach operators and L\'{e}vy operators in locally solid lattices. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 55-61. http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a3/