On operators dominated by Kantorovich–Banach operators and Lévy operators in locally solid lattices
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 55-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A linear operator $T$ acting in a locally solid vector lattice $(E,\tau)$ is said to be: a Lebesgue operator, if $Tx_\alpha\stackrel{\tau}{\to}0$ for every net in $E$ satisfying $x_\alpha\downarrow 0$; a $KB$-operator, if, for every $\tau$-bounded increasing net $x_\alpha$ in $E_+$, there exists an $x\in E$ with $Tx_\alpha\stackrel{\tau}{\to}Tx$; a quasi $KB$-operator, if $T$ takes $\tau$-bounded increasing nets in $E_+$ to $\tau$-Cauchy ones; a Lévi operator, if, for every $\tau$-bounded increasing net $x_\alpha$ in $E_+$, there exists an $x\in E$ such that $Tx_\alpha\stackrel{o}{\to}Tx$; a quasi Levi operator, if $T$ takes $\tau$-bounded increasing nets in $E_+$ to $o$-Cauchy ones. The present article is devoted to the domination problem for the quasi $KB$-operators and the quasi Lévi operators in locally solid vector lattices. Moreover, some properties of Lebesgue operators, Lévi operators, and $KB$-operators are investigated. In particularly, it is proved that the vector space Lebesgue operators is a subalgebra of the algebra of all regular operators.
@article{VMJ_2022_24_3_a3,
     author = {S. G. Gorokhova and E. Yu. Emelyanov},
     title = {On operators dominated by {Kantorovich{\textendash}Banach} operators and {L\'evy} operators in locally solid lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {55--61},
     year = {2022},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a3/}
}
TY  - JOUR
AU  - S. G. Gorokhova
AU  - E. Yu. Emelyanov
TI  - On operators dominated by Kantorovich–Banach operators and Lévy operators in locally solid lattices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 55
EP  - 61
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a3/
LA  - ru
ID  - VMJ_2022_24_3_a3
ER  - 
%0 Journal Article
%A S. G. Gorokhova
%A E. Yu. Emelyanov
%T On operators dominated by Kantorovich–Banach operators and Lévy operators in locally solid lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 55-61
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a3/
%G ru
%F VMJ_2022_24_3_a3
S. G. Gorokhova; E. Yu. Emelyanov. On operators dominated by Kantorovich–Banach operators and Lévy operators in locally solid lattices. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 55-61. http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a3/

[1] Alpay, S., Emelyanov, E. and Gorokhova, S., “$o\tau$-Continuous, Lebesgue, $KB$, and Levi Operators between Vector Lattices and Topological Vector Spaces”, Results in Mathematics, 77:3 (2022), 117, 1–25, 25 pp. | DOI

[2] Aliprantis, C. D. and Burkinshaw, O., Locally Solid Riesz Spaces with Applications to Economics, Mathematical Surveys and Monographs, 105, 2nd edition, American Mathematical Society, Providence, RI, 2003

[3] Jalili, S. A., Azar, K. H. and Moghimi, M. B. F., “Order-to-topology Continuous Operators”, Positivity, 25 (2021), 1313–1322 | DOI

[4] Bahramnezhad, A. and Azar, K. H., “$KB$-Operators on Banach Lattices and their Relationships with Dunford–Pettis and Order Weakly Compact Operators”, University Politehnica of Bucharest Scientific Bulletin, Ser. A: Applied Mathematics and Physics, 80:2 (2018), 91–98

[5] Alt{\i}n, B. and Machrafi, N., “Some Characterizations of $KB$-Operators on Banach Lattices and Ordered Banach Spaces”, Turkish Journal of Mathematics, 44 (2020), 1736–1743 | DOI

[6] Turan, B. and Alt{\i}n, B., “The Relation between $b$-Weakly Compact Operator and $KB$-Operator”, Turkish Journal of Mathematics, 43 (2019), 2818–2820 | DOI

[7] Emelyanov E., Algebras of Lebesgue and $KB$ regular operators on Banach lattices, arXiv: 2203.08326

[8] Aliprantis, C. D. and Burkinshaw, O., Positive Operators, Springer, Dordrecht, 2006