On a difference scheme for solution of the Dirichlet problem for diffusion equation with a fractional Caputo derivative in the multidimensional case in a domain with an arbitrary boundary
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 37-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the Dirichlet problem for the diffusion equation with a fractional Caputo derivative in the multidimensional case in a domain with an arbitrary boundary. Instead of the original equation, we consider the diffusion equation with a fractional Caputo derivative with a small parameter. A locally one-dimensional difference scheme of A. A. Samarsky, the main essence of which is to reduce the transition from layer to layer to the sequential solution of a number of one-dimensional problems in each of the coordinate directions. Moreover, each of the auxiliary problems may not approximate the original problem, but in the aggregate and in special norms such an approximation takes place. These methods have been called splitting methods. Using the maximum principle, we obtain an a priori estimate in the uniform metric norm. The stability of the locally one-dimensional difference scheme and the uniform convergence of the approximate solution of the proposed difference scheme to the solution of the original differential problem for any $0<\alpha<1$ are proved. An analysis is made of the choice of optimal values of $\varepsilon$, at which the rate of uniform convergence of the approximate solution of the considered difference scheme to the solution of the original differential problem will be determined in the best way.
@article{VMJ_2022_24_3_a2,
     author = {Z. V. Beshtokova and M. Kh. Beshtokov and M. H. Shkhanukov-Lafishev},
     title = {On a difference scheme for solution of the {Dirichlet} problem for diffusion equation with a fractional {Caputo} derivative in the multidimensional case in a domain with an arbitrary boundary},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {37--54},
     year = {2022},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a2/}
}
TY  - JOUR
AU  - Z. V. Beshtokova
AU  - M. Kh. Beshtokov
AU  - M. H. Shkhanukov-Lafishev
TI  - On a difference scheme for solution of the Dirichlet problem for diffusion equation with a fractional Caputo derivative in the multidimensional case in a domain with an arbitrary boundary
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 37
EP  - 54
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a2/
LA  - ru
ID  - VMJ_2022_24_3_a2
ER  - 
%0 Journal Article
%A Z. V. Beshtokova
%A M. Kh. Beshtokov
%A M. H. Shkhanukov-Lafishev
%T On a difference scheme for solution of the Dirichlet problem for diffusion equation with a fractional Caputo derivative in the multidimensional case in a domain with an arbitrary boundary
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 37-54
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a2/
%G ru
%F VMJ_2022_24_3_a2
Z. V. Beshtokova; M. Kh. Beshtokov; M. H. Shkhanukov-Lafishev. On a difference scheme for solution of the Dirichlet problem for diffusion equation with a fractional Caputo derivative in the multidimensional case in a domain with an arbitrary boundary. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 37-54. http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a2/

[1] Oldham K. B., Spanier J., The Fractional Calculus, Academic Press, N. Y.–London, 1974, 234 pp.

[2] Miller K. S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons. Inc, N. Y., 1993, 376 pp.

[3] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[4] Shogenov V. Kh., Kumykova S. K., Shkhanukov-Lafishev M. Kh., “Obobschennoe uravnenie perenosa i drobnye proizvodnye”, Dokl. Adygsk. (Cherkessk.) Mezhdunar. AN, 2:1 (1996), 43–45

[5] Podlubny I., Fractional Differential Equations, Academic Press, San-Diego, 1999, 368 pp.

[6] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp.

[7] Kochubei A. Yu., “Diffuziya drobnogo poryadka”, Dif. uravneniya, 26:4 (1990), 660–670

[8] Malshakov A. B., “Uravneniya gidrodinamiki dlya poristykh sred so strukturoi porovogo prostranstva, obladayuschei fraktalnoi geometriei”, Inzh.-Fiz. zhurn., 62:3 (1992), 405–410

[9] Uchaikin V. V., Metod drobnykh proizvodnykh, Izd-vo «Artishok», Ulyanovsk, 2008, 512 pp.

[10] Tarasov V. E., Modeli teoreticheskoi fiziki s integro-differentsirovaniem drobnogo poryadka, Izhevskii in-t kompyut. issled., Izhevsk, 2011, 568 pp.

[11] Douglas J., Rachford H. H., “On the numerical solution of heat conduction problems in two and three space variables”, Trans. Amer. Math. Soc., 82:2 (1956), 421–439 | DOI

[12] Peaceman D. W., Rashford H. H., “The numerical solution of parabolic and elliptic differential equations”, J. Soc. Industr. Appl. Math., 3:1 (1955), 28–41 | DOI

[13] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Sib. otdelenie, Novosibirsk, 1967, 196 pp.

[14] Samarskii A. A., “Ob odnom ekonomichnom raznostnom metode resheniya mnogomernogo parabolicheskogo uravneniya v proizvolnoi oblasti”, Zhurn. vychisl. matem. i mat. fiz., 2:5 (1962), 787–811

[15] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983, 617 pp.

[16] Samarskii A. A., Gulin A. B., Ustoichivost raznostnykh skhem, Nauka, M., 1973, 415 pp.

[17] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988, 264 pp.

[18] Dyakonov E. G., “Raznostnye skhemy s rasscheplyayuschimsya operatorom dlya mnogomernykh nestatsionarnykh zadach”, Zhurn. vychisl. matem. i mat. fiz., 2:4 (1962), 549–568

[19] Lafisheva M. M., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya raznostnaya skhema dlya uravneniya diffuzii drobnogo poryadka”, Zhurn. vychisl. matem. i mat. fiz., 48:10 (2008), 1878–1887

[20] Ashabokov B. A., Beshtokova Z. V., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya raznostnaya skhema dlya uravneniya perenosa primesei drobnogo poryadka”, Zhurn. vychisl. matem. i mat. fiz., 57:9 (2017), 1517–1529 | DOI

[21] Bazzaev A. K., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernye skhemy dlya uravneniya diffuzii s drobnoi proizvodnoi po vremeni v oblasti proizvolnoi formy”, Zhurn. vychisl. matem. i mat. fiz., 56:1 (2016), 113–123 | DOI

[22] Beshtokova Z. V., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya raznostnaya skhema tretei kraevoi zadachi dlya parabolicheskogo uravneniya obschego vida s nelokalnym istochnikom”, Dif. uravneniya, 54:7 (2018), 891–901 | DOI

[23] Beshtokova Z. V., Lafishev M. M., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernye raznostnye skhemy dlya parabolicheskikh uravnenii v sredakh, obladayuschikh «pamyatyu»”, Zhurn. vychisl. matem. i mat. fiz., 58:9 (2018), 1531–1542 | DOI

[24] Beshtokov M. Kh., Vodakhova V. A., “Nelokalnye kraevye zadachi dlya uravneniya konvektsii-diffuzii drobnogo poryadka”, Vestn. Udmurt. un-ta. Mat. Mekh. Kompyut. nauki, 29:4 (2019), 459–482 | DOI

[25] Nakhusheva F. M., Vodakhova V. A., Kudaeva F. Kh., Abaeva Z. V., “Lokalno-odnomernaya raznostnaya skhema dlya uravneniya diffuzii drobnogo poryadka s sosredotochennoi teploemkostyu”, Sovremennye problemy nauki i obrazovaniya, 2015, no. 2–1, 763

[26] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5(77) (1957), 3–122

[27] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy, Nauka, M., 1977, 439 pp.

[28] Alikhanov A. A., “Apriornye otsenki reshenii kraevykh zadach dlya uravnenii drobnogo poryadka”, Dif. uravneniya, 46:5 (2010), 658–664