@article{VMJ_2022_24_3_a2,
author = {Z. V. Beshtokova and M. Kh. Beshtokov and M. H. Shkhanukov-Lafishev},
title = {On a difference scheme for solution of the {Dirichlet} problem for diffusion equation with a fractional {Caputo} derivative in the multidimensional case in a domain with an arbitrary boundary},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {37--54},
year = {2022},
volume = {24},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a2/}
}
TY - JOUR AU - Z. V. Beshtokova AU - M. Kh. Beshtokov AU - M. H. Shkhanukov-Lafishev TI - On a difference scheme for solution of the Dirichlet problem for diffusion equation with a fractional Caputo derivative in the multidimensional case in a domain with an arbitrary boundary JO - Vladikavkazskij matematičeskij žurnal PY - 2022 SP - 37 EP - 54 VL - 24 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a2/ LA - ru ID - VMJ_2022_24_3_a2 ER -
%0 Journal Article %A Z. V. Beshtokova %A M. Kh. Beshtokov %A M. H. Shkhanukov-Lafishev %T On a difference scheme for solution of the Dirichlet problem for diffusion equation with a fractional Caputo derivative in the multidimensional case in a domain with an arbitrary boundary %J Vladikavkazskij matematičeskij žurnal %D 2022 %P 37-54 %V 24 %N 3 %U http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a2/ %G ru %F VMJ_2022_24_3_a2
Z. V. Beshtokova; M. Kh. Beshtokov; M. H. Shkhanukov-Lafishev. On a difference scheme for solution of the Dirichlet problem for diffusion equation with a fractional Caputo derivative in the multidimensional case in a domain with an arbitrary boundary. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 37-54. http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a2/
[1] Oldham K. B., Spanier J., The Fractional Calculus, Academic Press, N. Y.–London, 1974, 234 pp.
[2] Miller K. S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons. Inc, N. Y., 1993, 376 pp.
[3] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.
[4] Shogenov V. Kh., Kumykova S. K., Shkhanukov-Lafishev M. Kh., “Obobschennoe uravnenie perenosa i drobnye proizvodnye”, Dokl. Adygsk. (Cherkessk.) Mezhdunar. AN, 2:1 (1996), 43–45
[5] Podlubny I., Fractional Differential Equations, Academic Press, San-Diego, 1999, 368 pp.
[6] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp.
[7] Kochubei A. Yu., “Diffuziya drobnogo poryadka”, Dif. uravneniya, 26:4 (1990), 660–670
[8] Malshakov A. B., “Uravneniya gidrodinamiki dlya poristykh sred so strukturoi porovogo prostranstva, obladayuschei fraktalnoi geometriei”, Inzh.-Fiz. zhurn., 62:3 (1992), 405–410
[9] Uchaikin V. V., Metod drobnykh proizvodnykh, Izd-vo «Artishok», Ulyanovsk, 2008, 512 pp.
[10] Tarasov V. E., Modeli teoreticheskoi fiziki s integro-differentsirovaniem drobnogo poryadka, Izhevskii in-t kompyut. issled., Izhevsk, 2011, 568 pp.
[11] Douglas J., Rachford H. H., “On the numerical solution of heat conduction problems in two and three space variables”, Trans. Amer. Math. Soc., 82:2 (1956), 421–439 | DOI
[12] Peaceman D. W., Rashford H. H., “The numerical solution of parabolic and elliptic differential equations”, J. Soc. Industr. Appl. Math., 3:1 (1955), 28–41 | DOI
[13] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Sib. otdelenie, Novosibirsk, 1967, 196 pp.
[14] Samarskii A. A., “Ob odnom ekonomichnom raznostnom metode resheniya mnogomernogo parabolicheskogo uravneniya v proizvolnoi oblasti”, Zhurn. vychisl. matem. i mat. fiz., 2:5 (1962), 787–811
[15] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983, 617 pp.
[16] Samarskii A. A., Gulin A. B., Ustoichivost raznostnykh skhem, Nauka, M., 1973, 415 pp.
[17] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988, 264 pp.
[18] Dyakonov E. G., “Raznostnye skhemy s rasscheplyayuschimsya operatorom dlya mnogomernykh nestatsionarnykh zadach”, Zhurn. vychisl. matem. i mat. fiz., 2:4 (1962), 549–568
[19] Lafisheva M. M., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya raznostnaya skhema dlya uravneniya diffuzii drobnogo poryadka”, Zhurn. vychisl. matem. i mat. fiz., 48:10 (2008), 1878–1887
[20] Ashabokov B. A., Beshtokova Z. V., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya raznostnaya skhema dlya uravneniya perenosa primesei drobnogo poryadka”, Zhurn. vychisl. matem. i mat. fiz., 57:9 (2017), 1517–1529 | DOI
[21] Bazzaev A. K., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernye skhemy dlya uravneniya diffuzii s drobnoi proizvodnoi po vremeni v oblasti proizvolnoi formy”, Zhurn. vychisl. matem. i mat. fiz., 56:1 (2016), 113–123 | DOI
[22] Beshtokova Z. V., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya raznostnaya skhema tretei kraevoi zadachi dlya parabolicheskogo uravneniya obschego vida s nelokalnym istochnikom”, Dif. uravneniya, 54:7 (2018), 891–901 | DOI
[23] Beshtokova Z. V., Lafishev M. M., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernye raznostnye skhemy dlya parabolicheskikh uravnenii v sredakh, obladayuschikh «pamyatyu»”, Zhurn. vychisl. matem. i mat. fiz., 58:9 (2018), 1531–1542 | DOI
[24] Beshtokov M. Kh., Vodakhova V. A., “Nelokalnye kraevye zadachi dlya uravneniya konvektsii-diffuzii drobnogo poryadka”, Vestn. Udmurt. un-ta. Mat. Mekh. Kompyut. nauki, 29:4 (2019), 459–482 | DOI
[25] Nakhusheva F. M., Vodakhova V. A., Kudaeva F. Kh., Abaeva Z. V., “Lokalno-odnomernaya raznostnaya skhema dlya uravneniya diffuzii drobnogo poryadka s sosredotochennoi teploemkostyu”, Sovremennye problemy nauki i obrazovaniya, 2015, no. 2–1, 763
[26] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5(77) (1957), 3–122
[27] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy, Nauka, M., 1977, 439 pp.
[28] Alikhanov A. A., “Apriornye otsenki reshenii kraevykh zadach dlya uravnenii drobnogo poryadka”, Dif. uravneniya, 46:5 (2010), 658–664