On an estimate of M. M. Djrbashyan's product $B_{\omega}$
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 133-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the mid-60s, by M. M. Djrbashyan proposed a new method for the definition and factorization of wide classes of functions meromorphic in the unit circle. These classes, which are denoted by $N\{\omega\}$, have a complex structure and cover all meromorphic functions in the unit circle due to the fact that they depend on a functional parameter $\omega (x)$. They go to classes $N_{\alpha }$ in case $\omega (x)=(1-x)^{\alpha}$, $-1<\alpha <+\infty$, and in special case $\omega (x)\equiv 1$, the class $N\{ \omega\}$ is the same as Nevanlinna's class. The fundamental role in the theory of factorization of these classes is played by the products $B_{\omega}$ of M. M. Djrbashyan, which in the case $\omega (x)=(1-x)^{\alpha}$, $-1<\alpha <+\infty$, turn into the products $B_{\alpha}$ of M. M. Djrbashyan. In a special case $\omega (x)\equiv 1$, products $B_{\omega}$ are transformed into products by Blaschke. Using the well-known theorem on nonnegative trigonometric series, V. S. Zakaryan, obtained upper estimations for the modules of functions $B_{\alpha}$, for $-1<\alpha <0$ . In this work, using a similar method, it is proved that $U_{\omega}(z;\zeta )\ge 0$, where $U_{\omega}$ is some auxiliary function. Next, using this result, upper estimations are given for the modules of products $B_{\omega}$ when $\omega (x)\in \Omega_0$.
@article{VMJ_2022_24_3_a10,
     author = {T. V. Tavaratsyan},
     title = {On an estimate of {M.~M.~Djrbashyan's} product $B_{\omega}$},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {133--143},
     year = {2022},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a10/}
}
TY  - JOUR
AU  - T. V. Tavaratsyan
TI  - On an estimate of M. M. Djrbashyan's product $B_{\omega}$
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 133
EP  - 143
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a10/
LA  - ru
ID  - VMJ_2022_24_3_a10
ER  - 
%0 Journal Article
%A T. V. Tavaratsyan
%T On an estimate of M. M. Djrbashyan's product $B_{\omega}$
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 133-143
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a10/
%G ru
%F VMJ_2022_24_3_a10
T. V. Tavaratsyan. On an estimate of M. M. Djrbashyan's product $B_{\omega}$. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 133-143. http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a10/

[1] Djrbashyan, M. M., “The Parametric Representation of Some General Classes of Meromorphic Functions in the Unit Circle”, Doklady Akademii Nauk SSSR, 157:5 (1964), 1024–1027 (in Russian)

[2] Djrbashyan, M. M. and Zakaryan, V. S., Classes and Boundary Properties of Meromorphic Functions in a Circle, Nauka, M., 1993 (in Russian)

[3] Nevanlinna R., Einduetige Analytische Funktionen, Springer, Berlin, 1937

[4] Privalov, I. I., Boundary Properties of Analytic Functions, State Publishing House of Technical-Theoretical Literature, M.–L., 1950 (in Russian)

[5] Duren P. L., Theory of $H^p$ Spaces, Academic Press, New York–London, 1970, 260 pp.

[6] Jerbashian A. M., Functions of $\alpha$-Bounded Type in the Half-Plane, Springer Sience+Business Media, Inc, 2005 | DOI

[7] Zakaryan, V. S. and Dallakyan, R. V., “On the Boundary Values of Functions of $A_{\omega }$ Classes”, Reports of the National Academy of Sciences of Armenia, 112:2 (2012), 135–140 (in Russian)

[8] Zakaryan, V. S., Dallakyan, R. V. and Djrbashyan, A. M., “About the $\omega$-Characteristics of Analytic Functions in the Unit Circle”, Reports of the National Academy of Sciences of Armenia, 113:1 (2013), 22–29 (in Russian)

[9] Dallakyan, R. V., “On $C$-Growth of $\omega $-Characteristics of Analytic Functions in the Unit Circle”, Reports of the National Academy of Sciences of Armenia, 113:2 (2013), 142–149 (in Russian)

[10] Bari, N. K., Trigonometric Series, Fizmatgiz, M., 1951 (in Russian)

[11] Zakaryan, V. S., “About one Estimate for the Product of M. M. Djrbashyan”, Izvestia AN Arm. SSR, 23:2 (1988), 189–192 (in Russian)