On an estimate of M.~M.~Djrbashyan's product $B_{\omega}$
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 133-143

Voir la notice de l'article provenant de la source Math-Net.Ru

In the mid-60s, by M. M. Djrbashyan proposed a new method for the definition and factorization of wide classes of functions meromorphic in the unit circle. These classes, which are denoted by $N\{\omega\}$, have a complex structure and cover all meromorphic functions in the unit circle due to the fact that they depend on a functional parameter $\omega (x)$. They go to classes $N_{\alpha }$ in case $\omega (x)=(1-x)^{\alpha}$, $-1\alpha +\infty$, and in special case $\omega (x)\equiv 1$, the class $N\{ \omega\}$ is the same as Nevanlinna's class. The fundamental role in the theory of factorization of these classes is played by the products $B_{\omega}$ of M. M. Djrbashyan, which in the case $\omega (x)=(1-x)^{\alpha}$, $-1\alpha +\infty$, turn into the products $B_{\alpha}$ of M. M. Djrbashyan. In a special case $\omega (x)\equiv 1$, products $B_{\omega}$ are transformed into products by Blaschke. Using the well-known theorem on nonnegative trigonometric series, V. S. Zakaryan, obtained upper estimations for the modules of functions $B_{\alpha}$, for $-1\alpha 0$ . In this work, using a similar method, it is proved that $U_{\omega}(z;\zeta )\ge 0$, where $U_{\omega}$ is some auxiliary function. Next, using this result, upper estimations are given for the modules of products $B_{\omega}$ when $\omega (x)\in \Omega_0$.
@article{VMJ_2022_24_3_a10,
     author = {T. V. Tavaratsyan},
     title = {On an estimate of {M.~M.~Djrbashyan's} product $B_{\omega}$},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {133--143},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a10/}
}
TY  - JOUR
AU  - T. V. Tavaratsyan
TI  - On an estimate of M.~M.~Djrbashyan's product $B_{\omega}$
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 133
EP  - 143
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a10/
LA  - ru
ID  - VMJ_2022_24_3_a10
ER  - 
%0 Journal Article
%A T. V. Tavaratsyan
%T On an estimate of M.~M.~Djrbashyan's product $B_{\omega}$
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 133-143
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a10/
%G ru
%F VMJ_2022_24_3_a10
T. V. Tavaratsyan. On an estimate of M.~M.~Djrbashyan's product $B_{\omega}$. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 133-143. http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a10/