@article{VMJ_2022_24_3_a1,
author = {R. Azib and S. Georgiev and A. Kheloufi and K. Mebarki},
title = {Existence of global classical solutions for the {Saint-Venant} equations},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {21--36},
year = {2022},
volume = {24},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a1/}
}
TY - JOUR AU - R. Azib AU - S. Georgiev AU - A. Kheloufi AU - K. Mebarki TI - Existence of global classical solutions for the Saint-Venant equations JO - Vladikavkazskij matematičeskij žurnal PY - 2022 SP - 21 EP - 36 VL - 24 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a1/ LA - en ID - VMJ_2022_24_3_a1 ER -
R. Azib; S. Georgiev; A. Kheloufi; K. Mebarki. Existence of global classical solutions for the Saint-Venant equations. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 21-36. http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a1/
[1] Saint-Venant, A. J. C., “Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et a l'introduction des marées dans leur lit”, Comptes rendus de l'Académie des Sciences de Paris, 73 (1871), 147–154
[2] Baklanovskaya, V. F. and Chechel', I. I., “A Numerical Method for Solving St. Venant's Equations (Chamber Model)”, USSR Computational Mathematics and Mathematical Physics, 16:5 (1976), 125–141 | DOI
[3] Alcrudo, F. and Garcia-Navarro, P., “A High-Resolution Godunov-Type Scheme in Finite Volumes for the 2D Shallow-Water Equations”, International Journal for Numerical Methods in Fluids, 16:6 (1993), 489–505 | DOI
[4] Garcia-Navarro, P., Alcrudo, F. and Savirón, J. M., “1-D Open-Channel Flow Simulation Using TVD-McCormack Scheme”, Journal of Hydraulic Engineering, 118:10 (1992), 1359–1372 | DOI
[5] Lien, F.-S., “A Pressure-Based Unstructured Grid Method for All-Speed Flows”, International Journal for Numerical Methods in Fluids, 33:3 (2000), 355–374 | 3.0.CO;2-X class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[6] Nguyen, D. K., Shi, Y.-E., Wang, S. S. and Nguyen, T. H., “2D Shallow-Water Model Using Unstructured Finite-Volumes Methods”, Journal of Hydraulic Engineering, 132:3 (2006), 258–269 | DOI
[7] Zarmehi, F., Tavakoli, A. and Rahimpour, M., “On Numerical Stabilization in the Solution of Saint-Venant Equations Using the Finite Element Method”, Computers and Mathematics with Applications, 62:4 (2011), 1957–1968 | DOI
[8] Baklanovskaya, V. F., Paltsev, B. V. and Chechel, I. I., “Boundary Value Problems for the St. Venant System of Equations on a Plane”, USSR Computational Mathematics and Mathematical Physics, 19:3 (1979), 157–174 | DOI
[9] Ton, B. A., “Existence and Uniqueness of a Classical Solution of an Initial Boundary Value Problem of the Theory of Shallow Waters”, SIAM Journal on Mathematical Analysis, 12:2 (1981), 229–241 | DOI
[10] Kloeden, P. E., “Global Existence of Classical Solutions in the Dissipative Shallow Water Equations”, SIAM Journal on Mathematical Analysis, 16:2 (1985), 301–315 | DOI
[11] Lai, H. V., Long, L. M. and Trung, M. D., “On Uniqueness of a Classical Solution of the System of Non-Linear 1-D Saint Venant Equations”, Vietnam Journal of Mechanics, NCST of Vietnam, 21:4 (1999), 231–238 | DOI
[12] Muzaev, I. D. and Tuaeva, Zh. D., “Two Methods for Solving an Initial-Boundary Value Problem for a System of Saint-Venant Equations”, Vladikavkaz. Math. J., 1:1 (1999), 43–47 (in Russian)
[13] Li, Y., Pan, R. and Zhu, S., “On Classical Solutions to 2D Shallow Water Equations with Degenerate Viscosities”, Journal of Mathematical Fluid Mechanics, 19:1 (2017), 151–190 | DOI
[14] Cheng, B. and Tadmor, E., “Long-Time Existence of Smooth Solutions for the Rapidly Rotating Shallow-Water and Euler Equations”, SIAM Journal on Mathematical Analysis, 39:5 (2008), 1668–1685 | DOI
[15] Cheng, B. and Xie, C., “On the Classical Solutions of Two Dimensional Inviscid Rotating Shallow Water System”, Journal of Differential Equations, 250:2 (2011), 690–709 | DOI
[16] Duan, B., Luo, Z. and Zheng, Y., “Local Existence of Classical Solutions to Shallow Water Equations with Cauchy-Data Containing Vacuum”, SIAM Journal on Mathematical Analysis, 44:2 (2012), 541–567 | DOI
[17] Liu, J.-G., Pego, R. L. and Pu, Y., “Well-Posedness and Derivative Blow-Up for a Dispersionless Regularized Shallow Water System”, Nonlinearity, 32:11 (2019), 4346–4376 | DOI
[18] Alekseenko, S. N., Dontsova, M. V. and Pelinovsky, D. E., “Global Solutions to the Shallow Water System with a Method of an Additional Argument”, Applicable Analysis, 96:9 (2017), 1444–1465 | DOI
[19] Yang, Y., “Global Classical Solutions to Two-Dimensional Chemotaxis-Shallow Water System”, Discrete and Continuous Dynamical Systems — B, 26:5 (2021), 2625–2643 | DOI
[20] Licht, C. C., Ha, T. T. and Vu, Q. P., “On Some Linearized Problems of Shallow Water Flows”, Differential and Integral Equations, 22:3–4 (2009), 275–283
[21] Georgiev, S. G. and Zennir, K., “Existence of Solutions for a Class of Nonlinear Impulsive Wave Equations”, Ricerche di Matematica, 71:1 (2022), 211–225 | DOI
[22] Djebali, S. and Mebarki, K., “Fixed Point Index Theory for Perturbation of Expansive Mappings by $k$-Set Contractions”, Topological Methods Nonlinear Analysis, 54:2A (2019), 613–640 | DOI
[23] Polyanin, A. and Manzhirov, A., Handbook of Integral Equations, CRC Press, 1998, 796 pp.