On a new combination of orthogonal polynomials sequences
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 5-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we are interested in the following inverse problem. We assume that $\{P_{n}\} _{n\geq 0}$ is a monic orthogonal polynomials sequence with respect to a quasi-definite linear functional $u$ and we analyze the existence of a sequence of orthogonal polynomials $\{ Q_{n}\} _{n\geq 0}$ such that we have a following decomposition $Q_{n}(x)+r_{n}Q_{n-1}(x)=P_{n}(x)+s_{n}P_{n-1}(x)+t_{n}P_{n-2}(x) +v_{n}P_{n-3}( x)$, $n\geq 0$, when $v_{n}r_{n}\neq 0,$ for every $n\geq 4.$ Moreover, we show that the orthogonality of the sequence $\{Q_{n}\}_{n\geq 0}$ can be also characterized by the existence of sequences depending on the parameters $r_{n}$, $s_{n}$, $t_{n}$, $v_{n}$ and the recurrence coefficients which remain constants. Furthermore, we show that the relation between the corresponding linear functionals is $k( x-c) u=( x^{3}+ax^{2}+bx+d) v$, where $c, a, b, d\in \mathbb{C}$ and $k\in \mathbb{C}\setminus \{0\}$. We also study some subcases in which the parameters $r_{n},$ $s_{n},$ $t_{n}$ and $v_{n}$ can be computed more easily. We end by giving an illustration for a special example of the above type relation.
@article{VMJ_2022_24_3_a0,
     author = {K. Ali Khelil and A. Belkebir and M. Ch. Bouras},
     title = {On a new combination of orthogonal polynomials sequences},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {5--20},
     year = {2022},
     volume = {24},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a0/}
}
TY  - JOUR
AU  - K. Ali Khelil
AU  - A. Belkebir
AU  - M. Ch. Bouras
TI  - On a new combination of orthogonal polynomials sequences
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 5
EP  - 20
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a0/
LA  - en
ID  - VMJ_2022_24_3_a0
ER  - 
%0 Journal Article
%A K. Ali Khelil
%A A. Belkebir
%A M. Ch. Bouras
%T On a new combination of orthogonal polynomials sequences
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 5-20
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a0/
%G en
%F VMJ_2022_24_3_a0
K. Ali Khelil; A. Belkebir; M. Ch. Bouras. On a new combination of orthogonal polynomials sequences. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 5-20. http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a0/

[1] Chihara T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978

[2] Maroni P., “Une Théorie Algébrique des Polynômes Orthogonaux. Application aux Polynômes Orthogonaux Semi-Classiques”, Orthogonal Polynomials and their Applications, IMACS Annals on Computing and Applied Mathematics, 9, eds. C. Brezinski et al., Baltzer, Basel, 1991, 95–130

[3] Petronilho J., “On the Linear Functionals Associated to Linearly Related Sequences of Orthogonal Polynomials”, Journal of Mathematical Analysis and Applications, 315:2 (2006), 379–393 | DOI

[4] Alfaro M., Marcellán F., Peña A. and Rezola M. L., “On Linearly Related Orthogonal Polynomials and their Functionals”, Journal of Mathematical Analysis and Applications, 287:1 (2003), 307–319 | DOI

[5] Alfaro M., Marcellán F., Peña A. and Rezola M. L., “On Rational Transformations of Linear Functionals: Direct Problem”, Journal of Mathematical Analysis and Applications, 298:1 (2004), 171–183 | DOI

[6] Alfaro M., Marcellán F., Peña A. and Rezola M. L., “When Do Linear Combinations of Orthogonal Polynomials Yield New Sequences of Orthogonal Polynomials”, Journal of Computational and Applied Mathematics, 233:6 (2010), 1446–1452 | DOI

[7] Alfaro M., Peña A., Rezola M. L. and Marcellán F., “Orthogonal Polynomials Associated with an Inverse Quadratic Spectral Transform”, Computers and Mathematics with Application, 61:4 (2011), 888–900 | DOI

[8] Alfaro M., Peña A., Petronilho J. and Rezola M. L., “Orthogonal Polynomials Generated by a Linear Structure Relation: Inverse Problem”, Journal of Mathematical Analysis and Applications, 401:1 (2013), 182–197 | DOI

[9] Kwon K. H., Lee D. W., Marcellan F. and Park S. B., “On Kernel Polynomials and Self-Perturbation of Orthogonal Polynomials”, Annali di Matematica Pura ed Applicata, 180:2 (2001), 127–146 | DOI

[10] Ronveaux A. and Van Assche W., “Upward Extension of the Jacobi Matrix for Orthogonal Polynomials”, Journal of Approximation Theory, 86:3 (1996), 335–357