On a new combination of orthogonal polynomials sequences
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 5-20
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we are interested in the following inverse problem. We assume that $\{P_{n}\} _{n\geq 0}$ is a monic orthogonal polynomials sequence with respect to a quasi-definite linear functional $u$ and we analyze the existence of a sequence of orthogonal polynomials $\{ Q_{n}\} _{n\geq 0}$ such that we have a following decomposition $Q_{n}(x)+r_{n}Q_{n-1}(x)=P_{n}(x)+s_{n}P_{n-1}(x)+t_{n}P_{n-2}(x) +v_{n}P_{n-3}( x)$, $n\geq 0$, when $v_{n}r_{n}\neq 0,$ for every $n\geq 4.$ Moreover, we show that the orthogonality of the sequence $\{Q_{n}\}_{n\geq 0}$ can be also characterized by the existence of sequences depending on the parameters $r_{n}$, $s_{n}$, $t_{n}$, $v_{n}$ and the recurrence coefficients which remain constants. Furthermore, we show that the relation between the corresponding linear functionals is $k( x-c) u=( x^{3}+ax^{2}+bx+d) v$, where $c, a, b, d\in \mathbb{C}$ and $k\in \mathbb{C}\setminus \{0\}$. We also study some subcases in which the parameters $r_{n},$ $s_{n},$ $t_{n}$ and $v_{n}$ can be computed more easily. We end by giving an illustration for a special example of the above type relation.
@article{VMJ_2022_24_3_a0,
author = {K. Ali Khelil and A. Belkebir and M. Ch. Bouras},
title = {On a new combination of orthogonal polynomials sequences},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {5--20},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a0/}
}
TY - JOUR AU - K. Ali Khelil AU - A. Belkebir AU - M. Ch. Bouras TI - On a new combination of orthogonal polynomials sequences JO - Vladikavkazskij matematičeskij žurnal PY - 2022 SP - 5 EP - 20 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a0/ LA - en ID - VMJ_2022_24_3_a0 ER -
K. Ali Khelil; A. Belkebir; M. Ch. Bouras. On a new combination of orthogonal polynomials sequences. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 5-20. http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a0/