@article{VMJ_2022_24_2_a9,
author = {A. A. Makhnev and Zhigang Wan},
title = {On $Q$-polynomial {Shilla} graphs with $b=6$},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {117--123},
year = {2022},
volume = {24},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a9/}
}
A. A. Makhnev; Zhigang Wan. On $Q$-polynomial Shilla graphs with $b=6$. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 117-123. http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a9/
[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl
[2] Koolen J. H., Park J., “Shilla Distance-Regular Graphs”, European Journal of Combinatorics, 31:8 (2010), 2064–2073 | DOI | MR | Zbl
[3] Belousov I. N., Makhnev A. A., “Shilla Graphs with $b = 5$ and $b = 6$”, Ural Mathematical Journal, 7:2 (2021), 51–58 | DOI | MR | Zbl
[4] Coolsaet K., Jurishich A., “Using Equality in the Krein Conditions to Prove Nonexistence of Certain Distance-Regular Graphs”, Journal of Combinatorial Theory, Series A, 115:6 (2008), 1086–1095 | DOI | MR | Zbl
[5] Gavrilyuk A. L., Koolen J. H., “A Characterization of the Graphs of Bilinear $(d\times d)$-Forms over $\mathbb{F}_2$”, Combinatorica, 39:2 (2010), 289–321 | DOI | MR