Approximation properties of polynomials $\hat{l}_{n,n}^\alpha(x),$ orthogonal on any sets
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 101-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Omega=\{x_0, x_1, \dots, x_j, \dots\}$ — discrete system of points such that $0=x_0 $\lim_{j\rightarrow\infty}x_j=+\infty$ and $\Delta{x_j}=x_{j+1}-x_j$, $\delta=\sup_{0\leq j<\infty}\Delta x_j<\infty,N=1/\delta.$ Asymptotic properties of polynomials $\hat{l}_{n,N}^\alpha(x)$ orthogonal with weight $\rho_1^\alpha(x_j)=e^{-x_j}(x_{j+1}^{\alpha+1}-x_j^{\alpha+1})/(\alpha+1)$ in the case $-1<\alpha\leq 0$ and $\rho_2^\alpha(x_j)=e^{-x_{j+1}}(x_{j+1}^{\alpha+1}-x_j^{\alpha+1}/(\alpha+1)$ in the case $\alpha>0$ on arbitrary grids consisting of an infinite many points on the semi-axis $[0, +\infty)$ are investigated. Namely an asymptotic formula is proved in which asymptotic behavior of these polynomials as $n$ tends to infinity together with $N$ is closely related to asymptotic behavior of the orthonormal Laguerre polynomials $\hat{L}_n^\alpha(x).$
@article{VMJ_2022_24_2_a8,
     author = {Z. M. Magomedova and A. A. Nurmagomedov},
     title = {Approximation properties of polynomials $\hat{l}_{n,n}^\alpha(x),$ orthogonal on any sets},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {101--116},
     year = {2022},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a8/}
}
TY  - JOUR
AU  - Z. M. Magomedova
AU  - A. A. Nurmagomedov
TI  - Approximation properties of polynomials $\hat{l}_{n,n}^\alpha(x),$ orthogonal on any sets
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 101
EP  - 116
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a8/
LA  - ru
ID  - VMJ_2022_24_2_a8
ER  - 
%0 Journal Article
%A Z. M. Magomedova
%A A. A. Nurmagomedov
%T Approximation properties of polynomials $\hat{l}_{n,n}^\alpha(x),$ orthogonal on any sets
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 101-116
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a8/
%G ru
%F VMJ_2022_24_2_a8
Z. M. Magomedova; A. A. Nurmagomedov. Approximation properties of polynomials $\hat{l}_{n,n}^\alpha(x),$ orthogonal on any sets. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 101-116. http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a8/

[1] Sharapudinov I. I., Mixed Series of Orthogonal Polynomials. Theory and Applications, DSC RAS, Makhachkala, 2004, 276 pp. (in Russian)

[2] Sharapudinov I. I., “Asymptotics of Polynomials Orthogonal on Grids of the Unit Circle and the Number Line”, Sovremennye Problemy Matematiki, Mekhaniki, Informatiki, Materialy Mezhdunarodnoy Nauchnoy Konferentsii, Izd-vo TulGU, Tula, 2009, 100–106 (in Russian)

[3] Sharapudinov I. I., “Some Properties of Polynomials Orthogonal on Nonuniform Grids of the Unit Circle and the Segment”, Sovremennye Problemy Teorii Funktsiy i ikh Prilozheniya, Materialy 15-i Saratovskoi Zimney Shkoly, Posviashchennoi 125-letiyu so Dnya Rozhdeniya V. V. Golubeva i 100-Letiyu SGU, Nauchnaya Kniga, Saratov, 2010, 187 (in Russian)

[4] Sharapudinov I. I., “Asymptotic Properties of the Polynomials Orthogonal on the Finite Nets of the Unite Circle”, Vestnik Dagestanskogo Nauchnogo Centra, 2011, no. 42, 5–14 (in Russian)

[5] Sharapudinov I. I., “Polynomials, Orthogonal on Grids From Unit Circle and Number Axis”, Daghestan Electronic Mathematical Reports, 1 (2013), 1–55 (in Russian) | DOI

[6] Nurmagomedov A. A., “Asymptotic Properties of Polynomials $\hat{p}_n^{\alpha,\beta}(x),$ Orthogonal on Any Sets in the Case of Integers $\alpha$ and $\beta$”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 10:2 (2010), 10–19 (in Russian) | DOI | MR

[7] Nurmagomedov A. A., “Polynomials, Orthogonal on Non-Uniform Grids”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 11:3(2) (2011), 29–42 (in Russian) | DOI

[8] Sultanakhmedov M. S., “Asymptotic Properties and Weighted Estimation of Polynomials, Orthogonal on the Nonuniform Grids with Jacobi Weight”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 14:1 (2014), 38–47 (in Russian) | DOI | Zbl

[9] Dorfler P., “Asymptotics of the Best Constant in a Certain Markov-Type Inequality”, Journal of Approximation Theory, 114:1 (2002), 84–97 | DOI | MR | Zbl

[10] Magomedova Z. M., “About Asymptotic Polynomials, Orthogonal on Any Grids”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 11:3(1) (2011), 32–41 (in Russian) | DOI | MR

[11] Szegö G., Orthogonal Polynomials, Fizmatgiz, M., 1962, 500 pp. (in Russian)