Approximation properties of polynomials $\hat{l}_{n,n}^\alpha(x),$ orthogonal on any sets
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 101-116

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega=\{x_0, x_1, \dots, x_j, \dots\}$ — discrete system of points such that $0=x_0$ $\lim_{j\rightarrow\infty}x_j=+\infty$ and $\Delta{x_j}=x_{j+1}-x_j$, $\delta=\sup_{0\leq j\infty}\Delta x_j\infty,N=1/\delta.$ Asymptotic properties of polynomials $\hat{l}_{n,N}^\alpha(x)$ orthogonal with weight $\rho_1^\alpha(x_j)=e^{-x_j}(x_{j+1}^{\alpha+1}-x_j^{\alpha+1})/(\alpha+1)$ in the case $-1\alpha\leq 0$ and $\rho_2^\alpha(x_j)=e^{-x_{j+1}}(x_{j+1}^{\alpha+1}-x_j^{\alpha+1}/(\alpha+1)$ in the case $\alpha>0$ on arbitrary grids consisting of an infinite many points on the semi-axis $[0, +\infty)$ are investigated. Namely an asymptotic formula is proved in which asymptotic behavior of these polynomials as $n$ tends to infinity together with $N$ is closely related to asymptotic behavior of the orthonormal Laguerre polynomials $\hat{L}_n^\alpha(x).$
@article{VMJ_2022_24_2_a8,
     author = {Z. M. Magomedova and A. A. Nurmagomedov},
     title = {Approximation properties of polynomials $\hat{l}_{n,n}^\alpha(x),$ orthogonal on any sets},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {101--116},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a8/}
}
TY  - JOUR
AU  - Z. M. Magomedova
AU  - A. A. Nurmagomedov
TI  - Approximation properties of polynomials $\hat{l}_{n,n}^\alpha(x),$ orthogonal on any sets
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 101
EP  - 116
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a8/
LA  - ru
ID  - VMJ_2022_24_2_a8
ER  - 
%0 Journal Article
%A Z. M. Magomedova
%A A. A. Nurmagomedov
%T Approximation properties of polynomials $\hat{l}_{n,n}^\alpha(x),$ orthogonal on any sets
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 101-116
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a8/
%G ru
%F VMJ_2022_24_2_a8
Z. M. Magomedova; A. A. Nurmagomedov. Approximation properties of polynomials $\hat{l}_{n,n}^\alpha(x),$ orthogonal on any sets. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 101-116. http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a8/