Solution to the fractional order Euler–Poisson–Darboux equation
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 85-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Interest in fractional order equations, both ordinary and partial, has been steadily growing in recent decades. This is due to the need to model processes in which the current state significantly depends on the previous states of the process, i.e. the so-called systems with “residual” memory. The paper considers the Cauchy problem for a one-dimensional, homogeneous Euler–Poisson–Darboux equation with a differential operator of fractional order in time, which is a left-sided Bessel operator of fractional order. At the same time, the usual second-order differential operator is used for the spatial variable. The connection between the Meyer and Laplace transformation obtained using the Poisson transformation, which is a special case of the relation with the Obreshkov transformation, is shown. A theorem is proved that determines the conditions for the existence of a solution to the problem under consideration. When proving the theorem of the existence of a solution, the Meyer transform was used. In this case, the solution of the problem is presented explicitly through the generalized Green's function. The Green function constructed to solve the problem under consideration is defined by means of the generalized hypergeometric Fox $H$-function.
@article{VMJ_2022_24_2_a7,
     author = {A. V. Dzarakhohov and E. L. Shishkina},
     title = {Solution to the fractional order {Euler{\textendash}Poisson{\textendash}Darboux} equation},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {85--100},
     year = {2022},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a7/}
}
TY  - JOUR
AU  - A. V. Dzarakhohov
AU  - E. L. Shishkina
TI  - Solution to the fractional order Euler–Poisson–Darboux equation
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 85
EP  - 100
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a7/
LA  - ru
ID  - VMJ_2022_24_2_a7
ER  - 
%0 Journal Article
%A A. V. Dzarakhohov
%A E. L. Shishkina
%T Solution to the fractional order Euler–Poisson–Darboux equation
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 85-100
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a7/
%G ru
%F VMJ_2022_24_2_a7
A. V. Dzarakhohov; E. L. Shishkina. Solution to the fractional order Euler–Poisson–Darboux equation. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 85-100. http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a7/

[1] Kipriyanov I. A., Singular Elliptic Boundary Value Problems, Nauka, M., 1997, 204 pp. (in Russian) | MR

[2] Goldstein S., “On Diffusion by Discontinuous Movements and Thetelegraph Equation”, The Quarterly Journal of Mechanics and Applied Mathematics, 4 (1951), 129–156 | DOI | MR | Zbl

[3] Katz M., “A Stochastic Model Related to the Telegrapher's Equation”, Rocky Mountain Journal of Mathematics, 4 (1974), 497–509 | DOI | MR

[4] Orsingher E., “Hyperbolic Equations Arising in Random Models”, Stochastic Processes and their Applications, 21 (1985), 93–106 | DOI | MR | Zbl

[5] Orsingher E. E., “A Planar Random Motion Governed by the Two-Dimensional Telegraph Equation”, Stochastic Processes and their Applications, 23 (1986), 385–397 | DOI | MR | Zbl

[6] Orsingher E., “Probability Law, Flow Function, Maximum Distribution of Wave-Governed Random Motions, and their Connections with Kirchhoff's Laws”, Stochastic Processes and their Applications, 34 (1990), 49–66 | DOI | MR | Zbl

[7] De Gregorio A., Orsingher E., “Random Flights Connecting Porous Medium and Euler–Poisson–Darboux Equations”, Journal of Mathematical Physics, 61:4 (2020), 041505, 18 pp. | DOI | MR | Zbl

[8] Garra R., Orsingher E., “Random Flights Related to the Euler–Poisson–Darboux Equation”, Markov Processes and Related Fields, 22 (2016), 87–110 | MR | Zbl

[9] Iacus S., “Statistical Analysis of the Inhomogeneous Telegrapher's Process”, Statistics Probability Letters, 55 (2001), 83–88 | DOI | MR | Zbl

[10] Metzler R., Klafter J., “The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach”, Physics Reports, 339 (2000), 1–77 | DOI | MR | Zbl

[11] Gorenflo R. R., Vivoli A., Mainardi F., “Discrete and Continuous Random Walk Models for Space-Time Fractional Diffusion”, Nonlinear Dynamics, 38 (2004), 101–116 | DOI | MR | Zbl

[12] De Gregorio A., Orsingher E., “Flying Randomly in $R^d$ with Dirichlet Displacements”, Stochastic Processes and their Applications, 122:2 (2012), 676–713 | DOI | MR | Zbl

[13] Watson G. N., A Treatise on the Theory of Bessel Functions, IL, M., 1949, 728 pp. (in Russian)

[14] Abramowitz M., Stegun I. A., Handbook of Mathematical Functions with Formulas. Graphs and Mathematical Tables, Dover Publ. Inc., New York, 1972, 1060 pp. | MR

[15] Kiryakova V., Generalized Fractional Calculus and Applications, Pitman Res. Notes Math., 301, Longman Sci. Tech. J. Wiley, N. Y., 1994, 388 pp. | MR | Zbl

[16] Gorenflo R., Kilbas A. A., Mainardi F., Rogosin S. V., Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin/Heidelberg, 2016, 443 pp. | MR

[17] Luchko Yu., “Algorithms for evaluation of the Wright function for the real arguments' values”, Fract. Calc. Appl. Anal., 11 (2008), 57–75 | MR | Zbl

[18] Kilbas A. A., Saigo M., H-Transforms. Theory and Applications, Chapman and Hall, Boca Raton, Florida, 2004, 408 pp. | DOI | MR | Zbl

[19] Stankovic B., “On the Function of E. M. Wright”, Publications de l'Institut Mathématique, Nouvelle Ser., 10:24 (1970), 113–124 | MR | Zbl

[20] Glaeske H. J., Prudnikov A. P., Skornik K. A., Operational Calculus and Related Topics, Chapman and Hall/CRC, New York, 2006, 424 pp. | DOI | MR | Zbl

[21] Samko S. G., Kilbas A. A., Marichev O. I., Integrals and Derivatives of Fractional Order and Some of their Applications, Nauka i tekhnika, Minsk, 1987, 688 pp.

[22] Sprinkhuizen-Kuyper I. G., “A Fractional Integral Operator Corresponding to Negative Powers of a Certain Second-Order Differential Operator”, Journal of Mathematical Analysis and Applications, 72 (1979), 674–702 | DOI | MR | Zbl

[23] McBride A. C., Fractional calculus and Integral Transforms of Generalized Functions, Pitman, London, 1979, 179 pp. | MR | Zbl

[24] Shishkina E. L., Sitnik S. M., “On Fractional Powers of Bessel Operators”, Journal of Inequalities and Special Functions, 8:1, Special Issue to Honor Prof. Ivan Dimovski's Contributions (2017), 49–67 | MR

[25] Shishkina E. L., Sitnik S. M., “A Fractional Equation with Left-Sided Fractional Bessel Derivatives of Gerasimov–Caputo Type”, Mathematics, 7:12 (2019), 1–21 | DOI

[26] Gerasimov A. N., “A Generalization of Linear Laws of Deformation and its Applicationto Problems of Internal Friction”, Academy of Sciences of the USSR. Applied Mathematics and Mechanics, 12 (1948), 529–539 (in Russian)

[27] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl