Study of inverse problem of thermoelasticity for inhomogeneous materials
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 75-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The formulation of the coefficient inverse problem of thermoelasticity for finite inhomogeneous bodies is given. Operator equations of the first kind in Laplace transforms are obtained to solve a nonlinear inverse problem on the basis of an iterative process. The solution of inverse problems of thermoelasticity in the originals is based on the inversion of operator relations in transformants using theorems of operational calculus on the convolution and differentiation of the original. The procedure for reconstruction of thermomechanical characteristics of a rod, layer, cylinder is considered. The initial approximation for the iterative process is found on the basis of two approaches. In the first approach, the initial approximation is found in the class of positive bounded linear functions. The coefficients of linear functions are determined from the condition of minimizing the residual functional. The second approach to finding the initial approximation is based on the method of algebraization. Computational experiments were carried out to recover both monotone and non-monotonic functions. One characteristic was restored while the others were known. Monotonic functions are restored better than non-monotonic ones. In the case of reconstructing the characteristics of layered materials, the greatest error occurred in the vicinity of the points of conjugate. The reconstruction procedure turned out to be resistant to noise in the input information.
@article{VMJ_2022_24_2_a6,
     author = {A. O. Vatulyan and S. A. Nesterov},
     title = {Study of inverse problem of thermoelasticity for inhomogeneous materials},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {75--84},
     year = {2022},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a6/}
}
TY  - JOUR
AU  - A. O. Vatulyan
AU  - S. A. Nesterov
TI  - Study of inverse problem of thermoelasticity for inhomogeneous materials
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 75
EP  - 84
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a6/
LA  - ru
ID  - VMJ_2022_24_2_a6
ER  - 
%0 Journal Article
%A A. O. Vatulyan
%A S. A. Nesterov
%T Study of inverse problem of thermoelasticity for inhomogeneous materials
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 75-84
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a6/
%G ru
%F VMJ_2022_24_2_a6
A. O. Vatulyan; S. A. Nesterov. Study of inverse problem of thermoelasticity for inhomogeneous materials. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 75-84. http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a6/

[1] Wetherhold R. C., Seelman S., Wang S., “The use of Functionally Graded Materials to Eliminated or Control Thermal Deformation”, Composites Science and Technology, 56:9 (1996), 1099–1104 | DOI

[2] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Extreme Methods of Solving Ill-Posed Problems, Nauka, M., 1988, 288 pp. (in Russian) | MR

[3] Rahideh H., Malekzadeh P., Haghighi M. R. G., Vaghefi M., “Two-Dimensional Inverse Transient Heat Conduction Analysis of Laminated Functionally Graded Circular Plates”, Appl. Therm. Eng., 154 (2019), 63–75 | DOI

[4] Cao K., Lesnic D., “Determination of Space-Dependent Coefficients from Temperature Measurements Using the Conjugate Gradient Method”, Num. Methods Part. Different. Eq., 43:4 (2018), 1370–1400 | DOI | MR

[5] Dulikravich G. S., Reddy S. R., Pasqualette M. A., Colaco M. J., Orlande H. R., Coverston J., “Inverse Determination of Spatially Varying Material Coefficients in Solid Objects”, J. Inverse Ill-Posed Probl., 24 (2016), 181–194 | DOI | MR | Zbl

[6] Dmitriev O. S., Zhivenkova A. A., “Numerical-Analytical Solution of the Nonlinear Coefficient Inverse Heat Conduction Problem”, Journal of Engineering Physics and Thermophysics, 91:6 (2018), 1353–1364 | DOI

[7] Geymonat G., Pagano S., “Identification of Mechanical Properties by Displacement Field Measurement: A Variational Approach”, Meccanica, 38 (2003), 535–545 | DOI | MR | Zbl

[8] Jadamba B., Khan A. A., Racity F., “On the Inverse Problem of Identifying Lame Coefficients in Linear Elasticity”, J. Comput. Math. Appl., 56:2 (2008), 431–443 | DOI | MR | Zbl

[9] Dudarev V. V., Vatulyan A. O., Mnukhin R. M., Nedin R. D., “Concerning an Approach to Identifying the Lame Parameters of an Elastic Functionally Graded Cylinder”, Math. Meth. Appl. Sci., 2020, 1–10 | DOI | MR

[10] Lukasievicz S. A., Babaei R., Qian R. E., “Detection of Material Properties in a Layered Body by Means of Thermal Effects”, J. Thermal Stresses, 26:1 (2003), 13–23 | DOI | MR

[11] Yang Y. C., Chen W. L., Chou H. M., Salazar J. L. L., “Inverse Hyperbolic Thermoelastic Analysis of a Functionally Graded Hollow Circular Cylinder in Estimating Surface Heat Flux and Thermal Stresses”, Int. J. Heat Mass Transfer, 60 (2013), 125–133 | DOI

[12] Vatulyan A. O., Nesterov S. A., Coefficient Inverse Problems of Thermomechanics, Southern Federal University Press, Rostov-on-Don–Taganrog, 2019, 146 pp. (in Russian)

[13] Nedin R., Nesterov S., Vatulyan A., “On an Inverse Problem for Inhomogeneous Thermoelastic Rod”, International Journal of Solids and Structures, 51:3 (2014), 767–773 | DOI

[14] Tikhonov A. N., Goncharskiy A. V., Stepanov V. V., Yagola A. G., Numerical Methods for Solving Ill-Posed Problems, Nauka, M., 1990, 230 pp. (in Russian) | MR

[15] Vatulyan A. O., Nesterov S. A., “On the Identification Problem of the Thermomechanical Characteristics of the Finite Functionally Graded Cylinder”, Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, 21:1 (2021), 35–47 (in Russian) | DOI | MR