@article{VMJ_2022_24_2_a6,
author = {A. O. Vatulyan and S. A. Nesterov},
title = {Study of inverse problem of thermoelasticity for inhomogeneous materials},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {75--84},
year = {2022},
volume = {24},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a6/}
}
TY - JOUR AU - A. O. Vatulyan AU - S. A. Nesterov TI - Study of inverse problem of thermoelasticity for inhomogeneous materials JO - Vladikavkazskij matematičeskij žurnal PY - 2022 SP - 75 EP - 84 VL - 24 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a6/ LA - ru ID - VMJ_2022_24_2_a6 ER -
A. O. Vatulyan; S. A. Nesterov. Study of inverse problem of thermoelasticity for inhomogeneous materials. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 75-84. http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a6/
[1] Wetherhold R. C., Seelman S., Wang S., “The use of Functionally Graded Materials to Eliminated or Control Thermal Deformation”, Composites Science and Technology, 56:9 (1996), 1099–1104 | DOI
[2] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Extreme Methods of Solving Ill-Posed Problems, Nauka, M., 1988, 288 pp. (in Russian) | MR
[3] Rahideh H., Malekzadeh P., Haghighi M. R. G., Vaghefi M., “Two-Dimensional Inverse Transient Heat Conduction Analysis of Laminated Functionally Graded Circular Plates”, Appl. Therm. Eng., 154 (2019), 63–75 | DOI
[4] Cao K., Lesnic D., “Determination of Space-Dependent Coefficients from Temperature Measurements Using the Conjugate Gradient Method”, Num. Methods Part. Different. Eq., 43:4 (2018), 1370–1400 | DOI | MR
[5] Dulikravich G. S., Reddy S. R., Pasqualette M. A., Colaco M. J., Orlande H. R., Coverston J., “Inverse Determination of Spatially Varying Material Coefficients in Solid Objects”, J. Inverse Ill-Posed Probl., 24 (2016), 181–194 | DOI | MR | Zbl
[6] Dmitriev O. S., Zhivenkova A. A., “Numerical-Analytical Solution of the Nonlinear Coefficient Inverse Heat Conduction Problem”, Journal of Engineering Physics and Thermophysics, 91:6 (2018), 1353–1364 | DOI
[7] Geymonat G., Pagano S., “Identification of Mechanical Properties by Displacement Field Measurement: A Variational Approach”, Meccanica, 38 (2003), 535–545 | DOI | MR | Zbl
[8] Jadamba B., Khan A. A., Racity F., “On the Inverse Problem of Identifying Lame Coefficients in Linear Elasticity”, J. Comput. Math. Appl., 56:2 (2008), 431–443 | DOI | MR | Zbl
[9] Dudarev V. V., Vatulyan A. O., Mnukhin R. M., Nedin R. D., “Concerning an Approach to Identifying the Lame Parameters of an Elastic Functionally Graded Cylinder”, Math. Meth. Appl. Sci., 2020, 1–10 | DOI | MR
[10] Lukasievicz S. A., Babaei R., Qian R. E., “Detection of Material Properties in a Layered Body by Means of Thermal Effects”, J. Thermal Stresses, 26:1 (2003), 13–23 | DOI | MR
[11] Yang Y. C., Chen W. L., Chou H. M., Salazar J. L. L., “Inverse Hyperbolic Thermoelastic Analysis of a Functionally Graded Hollow Circular Cylinder in Estimating Surface Heat Flux and Thermal Stresses”, Int. J. Heat Mass Transfer, 60 (2013), 125–133 | DOI
[12] Vatulyan A. O., Nesterov S. A., Coefficient Inverse Problems of Thermomechanics, Southern Federal University Press, Rostov-on-Don–Taganrog, 2019, 146 pp. (in Russian)
[13] Nedin R., Nesterov S., Vatulyan A., “On an Inverse Problem for Inhomogeneous Thermoelastic Rod”, International Journal of Solids and Structures, 51:3 (2014), 767–773 | DOI
[14] Tikhonov A. N., Goncharskiy A. V., Stepanov V. V., Yagola A. G., Numerical Methods for Solving Ill-Posed Problems, Nauka, M., 1990, 230 pp. (in Russian) | MR
[15] Vatulyan A. O., Nesterov S. A., “On the Identification Problem of the Thermomechanical Characteristics of the Finite Functionally Graded Cylinder”, Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, 21:1 (2021), 35–47 (in Russian) | DOI | MR