On finite homogeneous metric spaces
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 51-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey is devoted to recently obtained results on finite homogeneous metric spaces. The main subject of discussion is the classification of regular and semiregular polytopes in Euclidean spaces by whether or not their vertex sets have the normal homogeneity property or the Clifford — Wolf homogeneity property. Every finite homogeneous metric subspace of an Euclidean space represents the vertex set of a compact convex polytope with the isometry group that is transitive on the set of vertices, moreover, all these vertices lie on some sphere. Consequently, the study of such subsets is closely related to the theory of convex polytopes in Euclidean spaces. The normal generalized homogeneity and the Clifford — Wolf homogeneity describe more stronger properties than the homogeneity. Therefore, it is natural to first check the presence of these properties for the vertex sets of regular and semiregular polytopes. In addition to the classification results, the paper contains a description of the main tools for the study of the relevant objects.
@article{VMJ_2022_24_2_a4,
     author = {V. N. Berestovskiǐ and Yu. G. Nikonorov},
     title = {On finite homogeneous metric spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {51--61},
     year = {2022},
     volume = {24},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a4/}
}
TY  - JOUR
AU  - V. N. Berestovskiǐ
AU  - Yu. G. Nikonorov
TI  - On finite homogeneous metric spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 51
EP  - 61
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a4/
LA  - en
ID  - VMJ_2022_24_2_a4
ER  - 
%0 Journal Article
%A V. N. Berestovskiǐ
%A Yu. G. Nikonorov
%T On finite homogeneous metric spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 51-61
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a4/
%G en
%F VMJ_2022_24_2_a4
V. N. Berestovskiǐ; Yu. G. Nikonorov. On finite homogeneous metric spaces. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 51-61. http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a4/

[1] Berestovskii V. N., Nikonorov Yu. G., “Finite Homogeneous Metric Spaces”, Siberian Mathematical Journal, 60:5 (2019), 757–773 | DOI | MR | Zbl

[2] Berestovskii V. N., Nikonorov Yu. G., “Killing Vector Fields of Constant Length on Riemannian Manifolds”, Siberian Mathematical Journal, 49:3 (2008), 395–407 | DOI | MR | Zbl

[3] Berestovskii V. N., Nikonorov Yu. G., “On $\delta$-Homogeneous Riemannian Manifolds”, Differential Geometry and its Applications, 26:5 (2008), 514–535 | DOI | MR | Zbl

[4] Berestovskii V. N., Nikonorov Yu. G., “Clifford — Wolf Homogeneous Riemannian Manifolds”, Journal of Differential Geometry, 82:3 (2009), 467–500 | DOI | MR | Zbl

[5] Berestovskii V. N., Nikonorov Yu. G., “Generalized Normal Homogeneous Riemannian Metrics on Spheres and Projective Spaces”, Annals of Global Analysis and Geometry, 45:3 (2014), 167–196 | DOI | MR | Zbl

[6] Berestovskii V. N., Nikonorov Yu. G., Riemannian Manifolds and Homogeneous Geodesics, Springer Monographs in Mathematics, Springer, Cham, 2020 | DOI | MR | Zbl

[7] Berestovskii V. N., Nikonorov Yu. G., “Finite Homogeneous Subspaces of Euclidean Spaces”, Siberian Advances in Mathematics, 31:3 (2021), 155–176 | DOI

[8] Berestovskii V. N., Nikonorov Yu. G., “Semiregular Gosset polytopes”, Izvestiya: Mathematics, 86:4 (2022) (to appear) | DOI

[9] Wolf J. A., Spaces of Constant Curvature, 6th ed., AMS Chelsea Publishing, Providence, RI, 2011 | DOI | MR | Zbl

[10] Berestovskii V. N., Guijarro L., “A Metric Characterization of Riemannian Submersions”, Annals of Global Analysis and Geometry, 18:6 (2000), 577–588 | DOI | MR | Zbl

[11] Berger M., Geometry, v. I, Universitext, Springer-Verlag, Berlin, 2009 | MR | Zbl

[12] Coxeter H. S. M., Regular Polytopes, 3d ed., Dover, New York, 1973 | MR

[13] Cromwell P. R., Polyhedra, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[14] Grünbaum B., Convex Polytopes, Graduate Texts in Mathematics, 221, 2nd ed., Springer, New York, 2003 | DOI | MR

[15] Smirnov E. Yu., Reflection Groups and Regular Polyhedra, 2nd ed., MCCME, M., 2018, 56 pp. (in Russian)

[16] Martini, H., “A Hierarchical Classification of Euclidean Polytopes with Regularity Properties”, Polytopes: Abstract, Convex and Computational, Proc. of the NATO Advanced Study Institute (Scarborough, Ontario, Canada, August 20–September 3, 1993), NATO ASI Ser., Ser. C, Math. Phys. Sci., 440, eds. T. Bisztriczky et al., Kluwer Academic Publishers, Dordrecht, 1994, 71–96 | DOI | MR | Zbl

[17] Four-Dimensional Euclidean Space, http://eusebeia.dyndns.org/4d/index

[18] Schläfli L., Theorie der Vielfachen Kontinuität, Hrsg. im Auftrage der Denkschriften-Kommission der Schweizerischen Naturforschenden Gesellschaft von J.H. Graf, Georg Co, Zürich–Basel, 1901

[19] Gosset Th., “On the Regular and Semi-Regular Figures in Space of $n$ Dimensions”, Messenger Math., 29 (1900), 43–48 | MR

[20] Elte E. L., The Semiregular Polytopes of the Hyperspaces, University of Groningen, Groningen, 1912 (20.03.2021) https://quod.lib.umich.edu/u/umhistmath/ABR2632.0001.001

[21] Blind G., Blind R., “The Semiregular Polytopes”, Comment. Math. Helv., 66:1 (1991), 150–154 | DOI | MR | Zbl

[22] Dutour Sikirić M., , 20.03.2021 http://mathieudutour.altervista.org/Regular/