@article{VMJ_2022_24_2_a4,
author = {V. N. Berestovskiǐ and Yu. G. Nikonorov},
title = {On finite homogeneous metric spaces},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {51--61},
year = {2022},
volume = {24},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a4/}
}
V. N. Berestovskiǐ; Yu. G. Nikonorov. On finite homogeneous metric spaces. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 51-61. http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a4/
[1] Berestovskii V. N., Nikonorov Yu. G., “Finite Homogeneous Metric Spaces”, Siberian Mathematical Journal, 60:5 (2019), 757–773 | DOI | MR | Zbl
[2] Berestovskii V. N., Nikonorov Yu. G., “Killing Vector Fields of Constant Length on Riemannian Manifolds”, Siberian Mathematical Journal, 49:3 (2008), 395–407 | DOI | MR | Zbl
[3] Berestovskii V. N., Nikonorov Yu. G., “On $\delta$-Homogeneous Riemannian Manifolds”, Differential Geometry and its Applications, 26:5 (2008), 514–535 | DOI | MR | Zbl
[4] Berestovskii V. N., Nikonorov Yu. G., “Clifford — Wolf Homogeneous Riemannian Manifolds”, Journal of Differential Geometry, 82:3 (2009), 467–500 | DOI | MR | Zbl
[5] Berestovskii V. N., Nikonorov Yu. G., “Generalized Normal Homogeneous Riemannian Metrics on Spheres and Projective Spaces”, Annals of Global Analysis and Geometry, 45:3 (2014), 167–196 | DOI | MR | Zbl
[6] Berestovskii V. N., Nikonorov Yu. G., Riemannian Manifolds and Homogeneous Geodesics, Springer Monographs in Mathematics, Springer, Cham, 2020 | DOI | MR | Zbl
[7] Berestovskii V. N., Nikonorov Yu. G., “Finite Homogeneous Subspaces of Euclidean Spaces”, Siberian Advances in Mathematics, 31:3 (2021), 155–176 | DOI
[8] Berestovskii V. N., Nikonorov Yu. G., “Semiregular Gosset polytopes”, Izvestiya: Mathematics, 86:4 (2022) (to appear) | DOI
[9] Wolf J. A., Spaces of Constant Curvature, 6th ed., AMS Chelsea Publishing, Providence, RI, 2011 | DOI | MR | Zbl
[10] Berestovskii V. N., Guijarro L., “A Metric Characterization of Riemannian Submersions”, Annals of Global Analysis and Geometry, 18:6 (2000), 577–588 | DOI | MR | Zbl
[11] Berger M., Geometry, v. I, Universitext, Springer-Verlag, Berlin, 2009 | MR | Zbl
[12] Coxeter H. S. M., Regular Polytopes, 3d ed., Dover, New York, 1973 | MR
[13] Cromwell P. R., Polyhedra, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[14] Grünbaum B., Convex Polytopes, Graduate Texts in Mathematics, 221, 2nd ed., Springer, New York, 2003 | DOI | MR
[15] Smirnov E. Yu., Reflection Groups and Regular Polyhedra, 2nd ed., MCCME, M., 2018, 56 pp. (in Russian)
[16] Martini, H., “A Hierarchical Classification of Euclidean Polytopes with Regularity Properties”, Polytopes: Abstract, Convex and Computational, Proc. of the NATO Advanced Study Institute (Scarborough, Ontario, Canada, August 20–September 3, 1993), NATO ASI Ser., Ser. C, Math. Phys. Sci., 440, eds. T. Bisztriczky et al., Kluwer Academic Publishers, Dordrecht, 1994, 71–96 | DOI | MR | Zbl
[17] Four-Dimensional Euclidean Space, http://eusebeia.dyndns.org/4d/index
[18] Schläfli L., Theorie der Vielfachen Kontinuität, Hrsg. im Auftrage der Denkschriften-Kommission der Schweizerischen Naturforschenden Gesellschaft von J.H. Graf, Georg Co, Zürich–Basel, 1901
[19] Gosset Th., “On the Regular and Semi-Regular Figures in Space of $n$ Dimensions”, Messenger Math., 29 (1900), 43–48 | MR
[20] Elte E. L., The Semiregular Polytopes of the Hyperspaces, University of Groningen, Groningen, 1912 (20.03.2021) https://quod.lib.umich.edu/u/umhistmath/ABR2632.0001.001
[21] Blind G., Blind R., “The Semiregular Polytopes”, Comment. Math. Helv., 66:1 (1991), 150–154 | DOI | MR | Zbl
[22] Dutour Sikirić M., , 20.03.2021 http://mathieudutour.altervista.org/Regular/